
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2007

Implementation of a XQuery engine for large
documents in CanstoreX
Srikanth Krithivasan
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Krithivasan, Srikanth, "Implementation of a XQuery engine for large documents in CanstoreX" (2007). Retrospective Theses and
Dissertations. 14637.
https://lib.dr.iastate.edu/rtd/14637

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F14637&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F14637&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F14637&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F14637&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F14637&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F14637&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F14637&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/14637?utm_source=lib.dr.iastate.edu%2Frtd%2F14637&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Implementation of a XQuery engine for large

documents in CanstoreX

by

Srikanth Krithivasan

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Shashi K. Gadia, Major Professor

Leslie Miller
Sree Nilakanta

Iowa State University

Ames, Iowa

2007

Copyright c© Srikanth Krithivasan, 2007. All rights reserved.

www.manaraa.com

UMI Number: 1447487

1447487
2008

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

www.manaraa.com

ii

DEDICATION

I would like to dedicate this thesis to my family and friends without whose support this

would have never been possible. I would like to specially dedicate this thesis to my parents

and to my brother for their loving care through my various phases of life. I would also like to

thank my friends for making my stay at Iowa State University a pleasant and memorable one

and for their moral support and assistance during the writing of this work.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . ix

ACKNOWLEDGEMENTS . xi

ABSTRACT . xii

CHAPTER 1. INTRODUCTION . 1

1.1 Introduction to XML . 1

1.2 Introduction to XQuery . 2

1.3 XQuery Implementations . 3

1.4 Introduction to Kweelt/Quilt . 3

1.5 Introduction to memory concepts . 3

1.6 Introduction to CanStoreX . 4

1.7 Introduction to XQuery Implementation . 5

CHAPTER 2. BACKGROUND . 6

2.1 XQuery . 6

2.1.1 The XQuery Language . 7

2.1.2 Path Expressions . 9

2.1.3 FLWR Expressions . 9

2.1.4 Operators/ Functions . 10

2.1.5 XQuery Grammar . 11

2.2 Quilt . 11

2.3 Kweelt platform . 11

www.manaraa.com

iv

2.3.1 Kweelt Architecture . 12

2.3.2 Extending the framework . 13

2.4 CanStoreX . 13

2.4.1 CanStoreX Architecture . 14

2.5 Prior Work . 17

2.6 Building the Application . 18

CHAPTER 3. NEED FOR A NEW ARCHITECTURE 19

3.1 Main-Memory Usage . 19

3.2 Storage of Intermediate Results In the Main Memory 19

3.3 Creation of In-Memory NodeLists . 20

3.4 Recursive Function Calls . 20

CHAPTER 4. ENHANCEMENTS IN THE NEW MODEL 22

4.1 Integrating CanStoreX . 22

4.2 Conversion of NodeLists to Iterators . 23

4.2.1 AncestorOrSelfNodeIterator . 23

4.2.2 AncestorNodeIterator . 24

4.2.3 ChildNodeIterator . 24

4.2.4 DescendantSelfNodeIterator . 24

4.2.5 DescendantNodeIterator . 25

4.2.6 DOMNodeListIterator . 25

4.2.7 ParentNodeIterator . 25

4.2.8 SelfNodeIterator . 25

4.2.9 AttributeNodeIterator . 25

4.2.10 PrecedingSiblingNodeIterator . 26

4.2.11 FollowingSiblingNodeIterator . 26

4.2.12 NestedDOMNodeIterator . 26

4.2.13 SequentialDOMNodeIterator . 26

4.2.14 StepDOMNodeIterator . 27

www.manaraa.com

v

4.2.15 PrecedingNodeIterator . 27

4.2.16 FollowingNodeIterator . 27

4.2.17 ValueResultIterator . 28

4.2.18 Native Iterators . 28

4.3 Processing Intermediate Results . 28

4.3.1 Intermediate Results Storage Format . 29

4.3.2 Result Iterator . 32

4.4 Conversion of recursive methods to iterative ones 33

4.5 Re-implementing the basic Kweelt functionality 33

4.6 LET Clause Evaluation . 34

CHAPTER 5. XQUERY SPECIFICATION 36

5.1 Simple form of FOR . 38

5.2 FOR together with WHERE . 39

5.3 FOR-FOR Clause . 39

5.4 FOR-FOR-WHERE Clause . 40

5.5 LET Clause . 41

5.6 FOR-LET Clause . 43

5.7 ORDER BY Clause . 44

5.8 Attribute Clause . 45

5.9 Object-Oriented Clauses . 46

5.9.1 Typed References Clause . 47

5.10 XMark Queries . 48

CHAPTER 6. SORTING TECHNIQUE . 50

6.1 Current Implementation . 51

6.2 Proposed Sorting Technique . 51

6.2.1 External Sorting Algorithm . 51

6.3 Implementation Specifications . 56

6.3.1 Creation of Linked List of Pages . 56

www.manaraa.com

vi

6.3.2 Storage Structure . 57

CHAPTER 7. EXPERIMENTAL RESULTS INTERPRETATION 61

7.1 Computer System Benchmark . 61

7.1.1 CPU . 61

7.1.2 RAM . 61

7.1.3 Hard-disks . 61

7.1.4 Operating System . 62

7.2 Application Benchmark . 62

7.2.1 Pagination PageSize . 62

7.2.2 Storage Files . 62

7.2.3 XML FileSize . 63

7.2.4 Pagination Strategy . 63

7.3 Performance Metrics . 63

7.3.1 Running Time . 63

7.3.2 Throughput . 63

7.4 Result Interpretations . 64

CHAPTER 8. CONCLUSIONS AND FUTURE WORKS 68

8.1 Conclusion . 68

8.2 Future Work . 68

APPENDIX A. EXPERIMENTAL RESULTS 70

BIBLIOGRAPHY . 90

www.manaraa.com

vii

LIST OF TABLES

Table A.1 Pagination Results . 71

Table A.2 De-pagination Results . 71

Table A.3 Simple FOR-Queries with a ”/” path expression 72

Table A.4 Simple FOR-Queries with a ”//” path expression 72

Table A.5 FOR-Queries with an ORDER BY clause along with a ”/” path expression 73

Table A.6 FOR-Queries with an ORDER BY clause along with a ”//” path ex-

pression . 73

Table A.7 FOR-WHERE-Queries with a ”/” path expression 74

Table A.8 FOR-WHERE-Queries with a ”//” path expression 74

Table A.9 FOR-WHERE-Queries with an ORDER BY clause along with a ”/”

path expression . 75

Table A.10 FOR-WHERE-Queries with an ORDER BY clause along with a ”//”

path expression . 75

Table A.11 LET-Queries with a ”/” path expression 76

Table A.12 LET-Queries with a ”//” path expression 77

Table A.13 FOR-LET-Queries with a ”/” path expression 77

Table A.14 FOR-LET-Queries with a ”//” path expression 78

Table A.15 Node Count on Documents . 79

Table A.16 FOR-FOR-Queries with a ”/” path expression 80

Table A.17 FOR-FOR-Queries with a ”//” path expression 81

Table A.18 FOR-FOR-WHERE-Queries with a ”/” path expression 82

Table A.19 FOR-FOR-WHERE-Queries with a ”//” path expression 83

www.manaraa.com

viii

Table A.20 Query 1 Performance Results . 84

Table A.21 Query 2 Performance Results . 84

Table A.22 Query 3 Performance Results . 85

Table A.23 Query 5 Performance Results . 85

Table A.24 Query 6 Performance Results . 86

Table A.25 Query 7 Performance Results . 86

Table A.26 Query 13 Performance Results . 87

Table A.27 Query 15 Performance Results . 87

Table A.28 Query 16 Performance Results . 88

Table A.29 Query 17 Performance Results . 88

Table A.30 Query 18 Performance Results . 89

Table A.31 Query 19 Performance Results . 89

www.manaraa.com

ix

LIST OF FIGURES

Figure 2.1 XML Documents . 8

Figure 2.2 Sample FLWR Expression . 10

Figure 2.3 Sample XML Document . 15

Figure 2.4 Binary Storage structure pertaining to the XML Document 16

Figure 4.1 Intermediate Results as a XML Document 30

Figure 4.2 Intermediate Results in a Page format 32

Figure 5.1 Sample XML Documents . 37

Figure 5.2 FOR Query . 38

Figure 5.3 FOR-WHERE Query . 39

Figure 5.4 FOR-FOR Query . 40

Figure 5.5 FOR-FOR-WHERE Query . 41

Figure 5.6 LET Query . 42

Figure 5.7 LET-LET Query . 42

Figure 5.8 FOR-LET Query . 44

Figure 5.9 SORT Query . 45

Figure 5.10 Sample Query involving Attributes . 46

Figure 5.11 Sample Object-Oriented XML Document 47

Figure 5.12 Hierarchical Schema for XMark XML Document 49

Figure 6.1 Sorting Configuration . 53

Figure 6.2 Merge Configuration . 54

Figure 6.3 Merge Technique . 55

www.manaraa.com

x

Figure 6.4 Sample Page Format . 57

Figure 6.5 Sort Results Storage Page Format . 59

Figure 7.1 Throughput of query engine on simple queries 65

Figure 7.2 Throughput of query engine on complex queries 65

Figure 7.3 Throughput of query engine on SORT queries 66

Figure 7.4 Throughput of query engine on XMark queries 66

www.manaraa.com

xi

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude to all those who have helped

me with various aspects of conducting research and the writing of this thesis. First and

foremost, Dr. Shashi K. Gadia for his guidance, patience, support, inspired style of teaching

and encouraging me to do research and come this far. I strongly believe that without his

guidance and motivation which he offered during my research and the writing of this thesis,

this would have never been possible. I would also like to thank my committee members for

their efforts and contributions to this work: Dr. Leslie Miller and Dr. Sree Nilakanta and also

for allowing me to implement a specific module of my research as part of their course project.

I would additionally like to thank Dr. Samik Basu, Dr. Pavan Aduri for their amazing style

of teaching.

My acknowledgement list extends to all the people whom I met at ISU who have made my

stay pleasant and memorable. My thanks to my roommates Visu and Vasanth for accepting to

stay with me during our first year, bearing all the troubles that I gave them and still deciding

to be my roommates for a second successive term. I would also like to thank Satya, Puvi,

Atul, Hari, Richard, Santosh, Harish, Parichey, Faraz, Kavitha, Kamna for their camaraderie

and for helping me during my troubled times. My lab-mates Jia, Seo-Young, Matt deserve my

gratitude for assisting me with my project and for providing an ambient atmosphere for me to

work.

www.manaraa.com

xii

ABSTRACT

XML is a markup language used for storing documents which contains structured informa-

tion. Its flexibility helps in storing, processing and querying diverse and complex documents

with any structure. While theoretically, XML could be used to handle any documents, the

currently available parsers require large amounts of main-memory resulting into severe restric-

tion on the size of XML documents. As a result, some technologies have been developed to

break the XML documents in to smaller chunks and allow the parsers to load only a specific

portion of the document when needed.

Two major but diagonally opposite approaches for storing an xml document on the disk

have emerged. The first breaks an xml document into parent child pairs and stores them into

relational storage [2, 3, 4, 5, 6]. The second approach builds a native storage for xml that at-

tempts to directly capture xml hierarchy [7, 8, 9, 10]. Canonical Storage for XML (CanStoreX)

is a native storage technology being developed by our group at Iowa State University that has

been tested for pagination of xml documents up to 100 Gigabytes in size [29]. CanStoreX

requires that every page is a self-contained xml document on its own right. Thus the pages

themselves form an xml-like hierarchy.

XML can be used to encode a variety of data. Examples are system configuration, meta-

data, documents such as books, relational data, and object-oriented data. An array of technolo-

gies has developed to process xml documents. Our major interest in xml lies in the view that

an xml document can be considered a database which can then be queried. There exists several

query engines for xml [15, 16, 20]. Kweelt is an excellent early platform that supports the Quilt

query language [31]. Quilt [18] is a preliminary query language which has subsequently been

extended to XQuery, a query language that has been standardized by the W3 Consortium [17].

www.manaraa.com

xiii

Quilt, the query language that Kweelt supports, is superseded by XQuery. Earlier, this issue

has largely been addressed in [32]. The original Kweelt uses DOM parser; therefore it can

only handle small documents. The main focus of this thesis is to deploy CanStoreX to query

documents of the size of gigabytes. The resulting platform has been extensively tested.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

This chapter provides a brief introduction to the various technologies and applications used

in the development of the XQuery application. It discusses about the current XML applications

prevalent in the industry, throws light on the characteristics of the same and emphasizes on

the need for a new application to process huge documents. A few technologies described in the

thesis are XML, the XQuery language, the Quilt language, the Kweelt platform for Quilt, the

CanStoreX architecture for the storage of XML documents and the current implementation of

the Kweelt platform.

1.1 Introduction to XML

XML stands for eXtensible Markup Language and is used for the digital representation of

documents [1]. XML was developed more to describe data in contrast to HTML which was

developed to display data. Thus, HTML is used to represent how data is presented to the

end-user while XML is used to represent the contents of the data itself. Whereas HTML uses

system-defined tags, in XML tags are user-defined. XML documents can range from being

completely arbitrary without any predefined structure to those that conform to predefined

structure. Two popular technologies to describe the structure of XML documents and to

validate them are Document Definition Type (DTD) and XML Schema Document (XSD).

As with any other markup language, an application for processing an xml document uti-

lizes a parser to serve it logical units of the xml document as needed. The two most widely

used parsers are DOM (Document Object Model), a tree based parser and SAX (Simple API

for XML), an event based parser. The SAX parser [36] scans the xml document serially from

beginning to end and while logical units in the xml document are matched, some predefined

www.manaraa.com

2

actions are taken by the application. Although SAX parser is efficient it is not suited for

dynamic conditional navigation of an xml document. DOM [35] caters to the richness of an

XML document well but it requires that the whole document is loaded as a fully expressed tree

in main memory. DOM requires main memory that is 5 to 10 times of the document itself.

Therefore, DOM is not scalable and that is an obstacle for applications that utilize DOM API.

The main memory issue of DOM has been addressed by Shihe Ma [28]. He developed a pagi-

nation algorithm for CanStoreX with the requirement that every page is a self contained xml

document. The algorithm was implemented in Java. This allowed Ma to paginate documents

up to 1 Gigabyte in size. In Mas representation, the xml contents of pages were stored as

plain text and for parsing of pages DOM parser was invoked. Unfortunately, peculiar memory

in Java became an obstacle in pushing the scalability of the pagination algorithm beyond the

gigabyte range. Daniel Patanroi addressed the scalability issue by developing a binary format

for the xml-pages [29]. The binary version of CanStoreX has been tested for documents up to

100 gigabytes in size ant it is expected to work for terabyte size documents. As stated above,

the main focus of this thesis is to utilize CanStoreX to develop a query engine for the xml

query language XQuery.

1.2 Introduction to XQuery

XQuery is the proposed query language for querying XML documents that is being recom-

mended by the XML Query working group of World Wide Web (W3C) consortium [17, 21, 22].

XQuery uses XPath expressions to address the various nodes in a document. The syntax

of XQuery is similar to that of SQL used for traditional database languages. The grammar

of XQuery is publicly available [17] which has been used to develop a parser by Satyadev

Nandakumar [32]. The parser currently supports most of the read operations associated with

XQuery. This proved to be very much helpful in the development of XQuery application.

www.manaraa.com

3

1.3 XQuery Implementations

There exists quite a few implementations of XQuery in the industry and academia with

diverse storage technologies of XML documents. We consider only those implementations along

with either a native or a non-native storage [7] for XML documents since we believe these would

overcome the limitations of main-memory processing and would scale to documents of the size

of terabytes. A few implementations [11, 12, 13, 14, 24] exist in the industry and a few [5, 8, 10]

in the academia. Though the internal implementation of storage of XML documents is not of

importance to us, these implementations could be used for a comparison of the throughput of

our application.

1.4 Introduction to Kweelt/Quilt

Kweelt is a platform which offers an implementation of a query language of XML called

Quilt. Kweelt is open source (GPL), completely written in Java and is easily extensible [31].

Kweelt provides an abstract representation of the nodes, tags and other entities involved with

a XML document so that these could be implemented in accordance with the implementor’s

choice. It is further supported by xerces parser which contains both DOM and SAX imple-

mentation required to parse documents.

Quilt is a XML query language proposed by Chamberlin, Florescu and Robbie [18]. The

XQuery language is built upon the syntax of Quilt and hence bears several resemblances to

the Quilt semantics. The parser application for Quilt has been implemented in the Kweelt

platform and has been tested to successfully query XML documents. Though the language is

currently not used and has been replaced by XQuery, a prior implementation turned out to be

very helpful in comprehending the nuances of XQuery and developing the query application.

1.5 Introduction to memory concepts

Any application requires a well-maintained memory organization which is critical for the

performance of the application. Memory organization is ideally assumed to be bi-level though

www.manaraa.com

4

there could exist several levels too. In a bi-level memory organization, we have the main

memory at the upper level which is used for processing information. This memory is ideally

faster and consequently more expensive. At the lower level, we have the disk (typically a

magnetic disk or tape) which is used as the secondary storage. This memory is slower and

cheaper too. Most of the contemporary systems deploy caching of data at the disk level and

at the main-memory level leading to several layers in the memory organization.

Since the disk memory is cheaper, information is primarily stored on the disk and trans-

ferred to the main memory as and when required. This gives rise to the concept of a page

used to transfer data between the disk and main memory. The page is the physical unit of

data transfer and information is exchanged in sets of pages. The disk space manager is used to

maintain data on the disk in various pages and return the requested page. Since a requested

page is ideally expected to be requested again in the future, the page contents are ideally stored

in the main memory itself for a certain period of time. This gives rise to the concept of a buffer

which is used to store the contents of a page in the main memory. A buffer manager is used

to monitor the contents of the buffer and update buffers with page contents when required.

Any data storage system would contain an implementation of the disk space manager and the

buffer manager to read and write data from its storage.

1.6 Introduction to CanStoreX

CanStoreX was originally developed to counteract the main memory limitation of DOM

parser and to allow parsing of large documents. Natix and CanStoreX, a CANonical STORagE

for Xml documents, are examples of native XML Database Management System (XBMS) that

break an XML document into smaller chunks each of which is a self-contained XML document

in its own right. In CanStoreX, the chunks are pages in computer systems that are units of

access between main memory and the disk. These pages are interlinked to each other through

special nodes called f-nodes and c-nodes. These nodes preserve the structure and content

of the original XML document so that the document could be retrieved completely through

these nodes without any loss in content and in structure. CanStoreX offers two flavors of

www.manaraa.com

5

storage: textual page implementation, where the pages are stored in plain-text and binary

page implementation, where the textual information is encoded onto binary and stored on

the storage. The binary version is more scalable than the textual version due to its efficient

storage ad retrieval mechanisms and hence has been adopted as the standard for parsing. The

binary version in turn offers two strategies for storing pages: fixed node size strategy where

the nodes have a fixed length and variable node size strategy where the nodes have variable

size depending on the information to be paginated. CanStoreX has been able to successfully

parse documents up-to 100 GB in size proving that it is scalable for huge documents and ideal

for query processing.

1.7 Introduction to XQuery Implementation

The thesis deals with describing the XQuery implementation on the binary version of

CanStoreX. Though the work resembles more of an integration of the various utilities, the

core of the development involved understanding of the various architectures and building new

modules to allow interaction of the utilities and properly fusing the result of one module onto

another. A preliminary version of XQuery has been developed and tested on documents up-to

100 GB in size, verified for accuracy and benchmarked for throughput performance.

The rest of the thesis is organized as follows. Chapter 2 provides a brief overview of the

existing Quilt implementation and Chapter 3 discusses the limitations on processing huge doc-

uments. Chapter 4 elucidates the new implementation emphasizing the ability to query large

documents and other performance enhancements. Chapter 5 provides a few sample queries of

the XQuery language. This is followed by a discussion on the sorting technique implemented

for XML nodes exploiting the CanStoreX architecture in Chapter 6. The experimental setup

and the results are discussed in Chapter 7. Finally, the thesis is concluded with the current

status and the suggested future works on the model in Chapter 8.

www.manaraa.com

6

CHAPTER 2. BACKGROUND

This chapter presents a brief overview of the existing state of XQuery and Quilt and

discusses about the current implementation of Quilt on the Kweelt platform. This includes a

general description of the functionalities of XQuery and Quilt language. The chapter further

discusses on the challenges that exist to implement XQuery on the Kweelt platform. Besides,

the chapter also discusses the implementation of CanStoreX storage and the mechanism of

data retrieval.

2.1 XQuery

XML arrived as a supplement for the then highly popular HTML since there arose a need

to store and exchange data in some convenient format which could be recognized in a browser

and by systems with diverse configurations. While XML was initially used only to transfer

data between applications, apparently people came to realize that any information could be

structured in a XML document regardless of how diverse and complex it was which would

also help in extracting specific portions of the document. Thus specific query and retrieval

methods were devised which would extract desired entities from the XML document. XQuery

is one such language which has been recommended by W3C to develop query patterns on XML

documents. It is currently being developed by the W3C XML Query Working Group and is

derived from a XML Query language called Quilt which in turn is borrowed from several other

languages such as XPath, XQL, XML-QL, SQL and OQL. XQuery is ultimately considered to

provide a platform-independent, powerful and easy means to retrieve information from XML

as what SQL did to traditional database systems [22].

www.manaraa.com

7

2.1.1 The XQuery Language

Since XQuery is designed to work on XML documents composed of hierarchical tree-based

structure, the data model is based on XPath expressions and defines every node to contain

a well-defined label besides a parent node, sibling nodes on either side and a set of children

nodes. Each of these nodes would again be recursively defined to contain the above mentioned

characteristics. The advantage with this data model lies with the fact that any document

or a collection of documents could be composed into one single conceptual structure and be

processed uniformly [21, 23].

XQuery is a functional language consisting of quite a few operators and expressions. The

following sections provide a glimpse into the syntactic and semantic structures of the language.

The examples mentioned below work on the sample XML documents ”Employees.xml” and

”Departments.xml” specified in Figure 5.1.

www.manaraa.com

8

Figure 2.1 XML Documents

www.manaraa.com

9

2.1.2 Path Expressions

XPath [19, 27] is the language which is the XML standard for specifying paths in a XML

document. A couple of sample path expressions are specified below.

Find the salaries of employees:

document("Employees.xml")//Entry/Salary

Find the Names of Employees working with DeptName1 and getting paid more than 60000.

document("Employees.xml")//Entry[DName = ’DeptName1’ AND Salary >= 60000]

XPath contains two kinds of query patterns, expressions and predicates. Expressions are

specified following a node and specify the pattern the query needs to look for in the document.

A ”/” pattern suggests that the user is looking only for the children of the current node and

the query does not need to look at the document any further while a ”//” suggests that the

user is looking for descendants of the current node. Predicates act on a specific node and

validate whether the node satisfies a specified criterion or criteria. The ’DName’ and ’Salary’

attributes specified in the above mentioned query are predicates which test whether the nodes

qualify both these conditions.

2.1.3 FLWR Expressions

FLWR expressions constitute the core of XQuery functionality and is analogous to Select-

From-Where Clause of the SQL language. A FLWR expression consists of the following clauses:

2.1.3.1 FOR-Clause

The FOR clause binds a variable to a collection of nodes so that the variable could iterate

over the collection for processing the elements one at a time. The FOR clause is useful for

processing individual elements.

www.manaraa.com

10

2.1.3.2 LET-Clause

The LET clause is used to bind a variable to a collection of nodes so that the variable

validates the collection a whole rather than individual elements. It is useful for aggregate

operations and for comparing / evaluating sets. A sample FLWR expression is illustrated in

Figure 2.2.

Figure 2.2 Sample FLWR Expression

2.1.3.3 WHERE-Clause

The WHERE clause is used in conjunction with FOR/LET clause to evaluate predicates

in order to qualify or disqualify the nodes and collections of nodes under consideration. It can

be viewed as a filter that returns the filtered list of nodes and collections of nodes that qualify.

2.1.3.4 RETURN-Clause

The RETURN clause is used to return elements either to the outermost query or to the

output stream. This clause is used to build element constructors and is executed for each

occurrence of a FOR/LET clause.

2.1.4 Operators/ Functions

XQuery provides a host of operators and functions that act on individual elements or

collections and return the desired information. Like SQL, XQuery also allows the aggregate

www.manaraa.com

11

functions include sum, count, avg, max and min. Besides, it provides the regular arithmetic,

relational, boolean and logical operators, conditional statements such as if-then-else, quantified

expressions such as some, every, satisfies etc.

2.1.5 XQuery Grammar

The current version of XQuery’s grammar is available at [17] which contains the Extended

Backus-Norm Form (EBNF) of the same. The current version includes updates to XML doc-

uments as proposed in a recent proposal and hence the grammar is modified to accommodate

the same. However, the current application uses only a subset of the grammar which includes

the basic FLWR expressions, path expressions and a few operators and functions. As men-

tioned before, the extension of XQuery grammar to the Kweelt platform was undertaken and

successfully completed by Nandakumar [32]. The grammar had then been implemented for a

textual version of CanStoreX though using the DiskDom implemented earlier by Ma [28].

2.2 Quilt

Quilt is a query language to process XML documents derived from several other languages

such as XML-QL, XPath, XQL, YATL and XSQL. Quilt was developed by Jonathan Robie,

Don Chamberlin and Daniela Florescu [18] and was basically built to combine the rich flavors

available in the above specified languages to design a small, implementable language to meet

the requirements specified in the W3C XML working group’s XML Query requirements. Quilt

relies on the structure of XML document and could process queries based on simple node

predicates, combining two heterogeneous documents, references, parent/child relationships,

attributes etc. XQuery was developed around Quilt.

2.3 Kweelt platform

Kweelt [31] is a framework to query XML data specifically designed to provide an evaluation

engine to support the Quilt language. It offers multiple back ends such as Oracle Parser, Sun

Parser and comes with a built-in DOM, SAX and Wizdom combine into one Xerces package.

www.manaraa.com

12

Further, Kweelt allows users to develop their own implementations of the Node and Node-

Factory classes using the parsers thereby promoting more diverse XML storage technologies.

It is open-source licensed with the GPL, completely written in Java and is quite extensible.

While Kweelt is specifically built to support Quilt, it does not offer all the features provided

by the Quilt language. Besides, Kweelt provides new features such as Typed referencing and

dereferencing nodes in the same document (IDREFS), in-line XML, Java external functions

etc.

2.3.1 Kweelt Architecture

The core modules of the Kweelt platform reside in the package xacute.quilt specifically

the query parser and the query evaluator. The classes in this package extend interfaces and

constants defined in xacute.common. The basic entities are represented by the Node and

NodeList classes. Node refers to a single element in the XML document while NodeList

refers to a collection of such nodes rooted at specific node. These are instantiated through a

NodeFactory class. Kweelt provides a generic implementation of these elements and allows the

user to develop his own architecture and add to it. The basic implementations are available in

xacute.impl package. One implementation which Kweelt provides is that of xacute.impl.dom

interface which contains a DOM based implementation and xacute.impl.xdom containing the

Xerces DOM based implementation.

The Kweelt evaluation engine executes a host of expressions, the primary one being Quilt-

Expression which handles the whole expression that is being passed on to the application. Sev-

eral distinct expression engines include FLWRExpression handling only the FLWR expressions,

FilterExpression handling the filters specified with each clause, AttributeExpression handling

the attributes associated with a node etc. The results of these expressions are wrapped onto

a Value object which defines a generic implementation of the result. The class is being ex-

tended by several classes to return node-specific information such as ValueString, ValueNum,

ValueBool and ValueNodeList.

A context is associated with every Quilt variable to determine its scope and life-time during

www.manaraa.com

13

the evaluation of a query. Every variable is thus bound to a Context, a binding to indicate if

the clause is a FOR/LET clause, the root node to evaluate the variable and any other predicate

or filter information. The evaluation of the contexts are being taken care of by the EvalContext

class which evaluates each context and returns a specific class of the Value node.

The creation of the nodes and the node lists is completely left to the user to develop

his/her own implementation. The corresponding interfaces are accessed through an instance

of the NodeFactory class which the user creates.

2.3.2 Extending the framework

The basic idea to extend the Kweelt framework is to create an instance of the parser, to

parse the specified query onto a QuiltQuery object and evaluate the object. The information

about the nodes and node lists would be initially determined through a NodeFactory object

provided by the EvalContext. To accomplish this, the evaluator would require a handler to

stream the query output. Once the handler and the evaluation context are obtained, the rest

of the processing involves evaluating the context on the various bind variables and streaming

the results to the handler associated with the context.

Building a new NodeFactory involves the following steps: parsing the XML document

and storing it in the required format, instantiating nodes and node lists depending on the

usage and offering the primitives associated with them. A Node, for instance, need to have

the primitives to read the label associated with it, its children, descendants, parent, siblings,

ancestors information. These need to be implemented as well for a new framework to be built

upon.

2.4 CanStoreX

Besides the query parser and the evaluation engine, one other significant feature in the

application is the actual storage of XML documents. It is very much apparent that the entire

application could not be run just with the main-memory in hand since the documents can

be very large in size. As had been discussed before, even parsing these documents could not

www.manaraa.com

14

proceed beyond documents of 10s of MB in size due to excessive main-memory consumption.

CanStoreX addresses the issue of memory requirement.

2.4.1 CanStoreX Architecture

As stated before, CanStoreX [28, 29] is a native storage for XML. CanStoreX requires each

page to be a legal XML document in its own right. The pages are linked to each other through

a hierarchical structure thereby maintaining the relationship between the nodes so that the

entire document could be reproduced or navigated without any loss in content or in structure.

CanStoreX uses auxiliary nodes called f-node and c-node which are used to link pages. The

f-node is used to group a sequence of siblings having the same parent. A subtree rooted at

the f-node is stored on a single page. The c-node contains a pointer to a child page where

a subtree rooted at a f-node resides. Pagination refers to the process of parsing through the

XML document and splitting it into several pages storing each of them onto the storage space.

The end result of pagination would be a page Id pointing to a page containing the root node of

the document. A sample XML document and the binary page storage structure corresponding

to the document are shown in Figure 2.3 and Figure 2.4.

www.manaraa.com

15

Figure 2.3 Sample XML Document

www.manaraa.com

16

Figure 2.4 Binary Storage structure pertaining to the XML Document

CanStoreX offers two flavors of storage: a textual-page based implementation where the

pages are stored in plain-text on the disk. This technique suffers from the drawback that

www.manaraa.com

17

one has to rely on some utility like DOM to parse pages on the fly. This is particularly

troublesome in runtime environment in Java where pages become binary objects allocated and

maintained on the heap in main memory. Mechanisms such as pinning and user-defined caching

mechanisms are not available. To counteract this problem, a binary version of CanStoreX had

been developed which stores the page in binary format on the disk. The advantages with this

format are that the binary page does not require a parser to be loaded onto the memory. The

pages are organized hierarchically in a tree-like structure that are readily navigated, thereby

eliminating dependency on parsers such as DOM. CanStoreX controls the main memory usage

through buffering that is is subjected to user-defined buffer replacement policies. This is

expected to work well for a document that is essentially a tree of pages.

With the binary page implementation in place, CanStoreX seems to offer the complete

freedom to parse documents of size in the range of terabytes. Currently, CanStoreX had been

tested for documents up to 100 GB in size and had been found to successfully parse and

recreate the documents.

2.5 Prior Work

This section deals with the previous work that has gone in building the XQuery application.

The storage system for the application was initially developed by Ma [28]. He developed a

textual version of a Canonical Storage System for XML documents where a typical XML

document is split into smaller XML documents and stored in the form of plain-text on the

pages. The system suffered from the drawback that the pages had to be brought into main

memory and had to be converted into DOM pages on the fly which occupied an enormous space

in the memory. Further usage of DOM made CanStoreX dependant on a third party DOM

parser. Daniel Patanroi [29] developed a binary version of CanStoreX where the pages are

stored in binary version along with the hierarchy information which removed the dependence

on a DOM parser and enabled the application to scale very well.

Once the storage system has been built, the development of XQuery engine was initially

undertaken was Satyadev [32]. He developed a parser for the XQuery language using the

www.manaraa.com

18

Kweelt framework which already supported the Quilt language. A query engine to evaluate

the queries was initially developed by Robert [33] in which he designed a DOM interface for

the CanStoreX architecture. This was further improved by Srikanth and Matt [34] to build a

full-fledged implementation of the XQuery evaluation engine.

2.6 Building the Application

With the existence of XQuery, Kweelt, Quilt and CanstoreX performing their expected

functionalities, the desired end-product would be to combine them all and create one appli-

cation that uses the CanStoreX storage, parses the specified XQuery and evaluates the same

on the Kweelt platform and return the results. One main problem with these is that the

applications function in their own way and needs to be integrated with each other to allow in-

formation to pass through them. As a preliminary step, the CanStoreX functionality needs to

be integrated with the Kweelt platform and specific primitives have to be developed to instruct

the Kweelt execution engine to use CanStoreX rather than the default main-memory storage.

Further, the results of XQuery parsing are currently wrapped onto Kweelt objects which need

to be converted to CanStoreX pages to process them. The thesis discusses all the challenges

and the implementation issues that existed in integrating these applications and the various

functionalities introduced in developing a single application that effectively co-ordinates with

these utilities and provides a XQuery engine.

www.manaraa.com

19

CHAPTER 3. NEED FOR A NEW ARCHITECTURE

Kweelt has been implemented very thoughtfully. It is highly modular and easily extensible.

The main issues are that it supports Quilt on one hand and utilizes SAX and DOM as the

underlying parsers. The Quilt has been superseded by the W3 standard XQuery for query of

XML documents. As stated before, this problem has already been addressed in [32]. CanStoreX

eliminates the need for SAX to load XML documents at query time as they are preloaded in the

CanStoreX storage in a paginated binary form. CanStoreX also eliminated the need for DOM

and has its own implementation DiskDom that allows efficient utilization of main memory.

This section describes how the current implementation of Kweelt affects the performance and

also provides means to overcome these limitations.

3.1 Main-Memory Usage

The current implementation of Kweelt loads the entire document onto the main memory

and builds a DOM tree out of the same to evaluate the query on the document and return the

results. Main memory several times the size of the document is required for query processing

which develops into a bottleneck from querying huge documents. The main-memory is always

restricted and should in theory do not depend on the size of the document. A need arises to

provide a storage structure which stores the XML document and provides only a portion of

the same to the main memory during processing.

3.2 Storage of Intermediate Results In the Main Memory

During the evaluation of a query, several intermediate nodes are obtained as a result of

processing and these need to be stored for further processing. Currently, Kweelt stores all these

www.manaraa.com

20

intermediate nodes in the main memory itself occupying a vital part of the storage which could

have been used for further processing. With a complex query being processed, there could be

several such intermediate nodes lying idle in the main memory. Further, the space occupied

by these nodes are not properly deallocated since the garbage collection is left to the Java

Virtual Machine. As a result, the performance deteriorates quickly and the overall throughput

is affected. These intermediate nodes could be stored on external storage and accessed when

needed thereby providing better usage of the main memory.

3.3 Creation of In-Memory NodeLists

Another implementation issue with the Kweelt code is the usage of NodeLists when a

collection of nodes needs to be processed. During the evaluation of certain queries, a hierarchy

of nodes (such as ancestors / descendants / children) need to be evaluated and Kweelt loads

all such nodes into the main memory into a NodeList structure. This structure is retained in

the memory until the final execution of query although the nodes inside the list only need to

be accessed one at a time. This list is apparently superfluous and could be replaced with a

dynamic structure which reads one node at a time from the storage space with the specified

hierarchy. The existence of such node lists add to the excessive main-memory consumption

and needs to be replaced for the application to scale better.

3.4 Recursive Function Calls

A lot of recursive functions exist in the Kweelt source code given that it operates on a

XML document with a tree based structure. Though recursive calls are easier to code while

processing tree information, they consume quite a lot of memory by creating several function

stacks. These could be replaced by non-recursive or iterative functions which maintain a user

stack and control the flow of information along the stack. Though coding an iterative function

is a bit tricky and generally involves a lot of effort, it greatly aids in reducing the memory

usage and is useful for debugging purposes too.

www.manaraa.com

21

The Kweelt implementation provides a very good platform for new developers to im-

plement their own storage for XML documents and to build parsing applications for XQuery;

nevertheless it contains a few bottlenecks which prevent users from using their applications

to scale to very large documents. CanStoreX helps to solve the storage structure of XML

documents while the problem of excessive main-memory consumption still exists. The follow-

ing sections discuss on the solutions implemented to overcome the main memory problem and

provide XQuery its capability to query large documents.

www.manaraa.com

22

CHAPTER 4. ENHANCEMENTS IN THE NEW MODEL

The new implementation of XQuery would focus on a couple of issues. One would be to

integrate CanStoreX with the current version of Kweelt and use CanStoreX as the default

storage structure for XML documents. We limit ourselves to using only the binary version

of CanStoreX for reasons mentioned before. The second area of focus is to remove the main-

memory limitation of Kweelt by adding several new primitives to access information directly

from the storage. This section would elucidate further on these new extensions.

4.1 Integrating CanStoreX

The CanStoreX architecture is introduced into the application by creating a new package

xacute.impl.csx which would contain the definition for the NodeFactory class pertaining to

CanStoreX. The factory would be responsible for creating nodes and node lists which comply

with the storage structure. A typical CanStoreX node would inherit all its features from

org.w3c.dom.Node due to the industry wide usage of the DOM structure. Hence the interface

of the node is unchanged while the actual implementation pertains to that of CanStoreX. For

example, a node would still possess firstChild, nextSibling, prevSibling etc. in accordance with

the DOM terminology while the implementation of these primitives would be based upon the

CanStoreX architecture that allows these nodes to be possibly scattered on different pages.

This interface ideally abstracts the details of storage structure from the client and would

represent a node to be a DOM Node to the outside world. A primitive version of DOMNode

was developed by Robert Stark [33] which we built upon to provide a full-fledged functionality.

A CanStoreX node list would look identical to a normal NodeList except for the fact that

instead of the node, the node list stores a pointer to the node position on the disk. This is

www.manaraa.com

23

one huge advantage accomplished with CanStoreX. Since the structure of CanStoreX defines

each node to be in a page with a particular offset, the pair (PageId,NodeOffset) could be used

to determine the position of a node on the storage. DOMNodeList exploits this information

and stores the pairs in the node list and when required, the actual node is read based on the

pointer information and evaluated against the predicates. Considering that there could be

millions of such nodes and storing even the pointer information is space consuming, these pairs

are eventually written onto the disk in a specified format explained later to be read from the

storage whenever they are required.

4.2 Conversion of NodeLists to Iterators

With a robust storage structure in place, we now turn our attention to limiting the main-

memory usage. The initial improvement would be to convert the node lists to specific iterators.

An iterator functions like a pipe where data constantly flows with regard to client’s require-

ments. An iterator would typically contain the following methods: open which opens the

iterator and sets it up for reading, hasNext which lets the client know if there is more data to

be read from the iterator, getNext which returns the next available data and close that closes

the iterator and releases the resources taken up by the iterator. Thus information could be

continually read from an iterator and once an element read from the iterator is processed, it

is disregarded for further processing. Such iterator based stream-oriented treatment of objects

is adequate and therefore desirable in databases [34].

There exists different kinds of node lists owing to the existence of different types of hierarchy

in a xml document such as list of children, ancestors, descendants, siblings etc. To cater to

these needs, different types of iterators have been designed and developed to retrieve nodes

based on its traversal position and are discussed below.

4.2.1 AncestorOrSelfNodeIterator

This iterator is used to return the current node and its ancestors (parent, grandparent,

great-grandparent nodes etc.) in a sequential fashion. The iterator would initially return the

www.manaraa.com

24

current node and would move a level up every time the next node is requested until it either

reaches the root node or the user explicitly invokes the close function.

4.2.2 AncestorNodeIterator

This iterator inherits its functionality from the AncestorOrSelfNodeIterator and returns all

the ancestors of the current node except the node itself. The iterator would initially return the

parent of the current node and would move a level up every time the next node is requested

until it either reaches the root node or the user explicitly invokes the close function.

4.2.3 ChildNodeIterator

This iterator is used to return all the children of the current node. The iterator would

return the first child of the node initially followed by the right siblings of the first child until

it either reaches a node with no right sibling or the user explicitly invokes the close function.

4.2.4 DescendantSelfNodeIterator

This iterator is used to return the current node and all of its descendants (any node which

is an immediate child or has an ancestor which is a child of the current node, ideally any

node which could be reached through a simple path from the current node). The iterator

performs its traversal in a pre-order fashion where it returns the node it has currently visited

before it traverses to a new node. The nodes are returned in the exact order in which they

are visited. The iterator is implemented in a non-recursive way using stacks to control the

traversal information and to determine the next point of hop from a current node position.

It also ensures that the entire subtree is visited and the nodes are visited only once thereby

avoiding repetitive traversals. A simple traversal of the iterator would return the nodes in the

order of their left-to-right association with their siblings i.e. a node would be visited before a

descendant of its right siblings and after the descendants of its left siblings.

www.manaraa.com

25

4.2.5 DescendantNodeIterator

The iterator inherits its functionality from the DescendantSelfNodeIterator with the only

exception being that the current node is not returned and the traversal starts with the first

child of the current node.

4.2.6 DOMNodeListIterator

The iterator is used to group a set of nodes which are completely unrelated to each other

i.e. do not have a specific hierarchy. These nodes could be produced during the evaluation of a

predicate or an expression and needs to be stored as intermediate results for further processing.

The nodes are stored in the DOMNodeList which contains pointers to the original node on

disk. The iterator would return the nodes in the exact sequence in which they appear in the

DOMNodeList.

4.2.7 ParentNodeIterator

The iterator is used to return only the parent node associated with the current node. Since

the tree-based structure of XML allows only one parent to be connected to a node, the iterator

returns only the parent node and exits.

4.2.8 SelfNodeIterator

The iterator is used to return just the current node. The iterator is defined for compatibility

purposes and merely does the task of returning the current node and exiting.

4.2.9 AttributeNodeIterator

The iterator is used to return all the attributes associated with the current node. It returns

the attribute in the order in which they exist in the original XML document.

www.manaraa.com

26

4.2.10 PrecedingSiblingNodeIterator

The iterator is used to return all the left siblings of the current node. It returns the

immediate left sibling of the node initially followed by the siblings to the left of them until it

either reaches a node with no left sibling or the user explicitly invokes the close function.

4.2.11 FollowingSiblingNodeIterator

The iterator is used to return all the right siblings of the current node. It returns the

immediate right sibling of the node initially followed by the siblings to the right of them until

it either reaches a node with no right sibling or the user explicitly invokes the close function.

4.2.12 NestedDOMNodeIterator

This is a variant of the normal iterators in that it does not return elements based on a

specific hierarchy by itself. The iterator is used to group a set of iterators by nesting one

iterator with another, for example, an AncestorNodeIterator is setup as the base iterator and

a ChildNode iterator is set to be the child iterator of that. This would essentially imply that

for all ancestors of the current node, return the children of each of the ancestors following

the hierarchy specified i.e. it would return all the children of the parent of the node (the

immediate ancestor) before returning the children of the ancestors of the parent node. One

important observation to be considered is that the iterator should never return the ancestors

of the current node; instead it should only return their children even though it processes them.

The flexibility of XQuery allows such expressions to be defined and a generic implementation

is required to handle these. The implementation is defined to theoretically allow any number

of nesting levels supporting any kind of iterators.

4.2.13 SequentialDOMNodeIterator

The iterator is similar to NestedDOMNodeIterator that it is used to group a set of iterators

in a specified sequence. The iterator executes the first iterator in the sequence returning all

the nodes in the specified order and when the first iterator is exhausted, it moves to the second

www.manaraa.com

27

iterator, returns all its nodes and so on. The iterator is merely used to combine several other

iterators discussed and return elements in the sequence of their enclosing iterator.

4.2.14 StepDOMNodeIterator

The iterator again contains a base iterator and a child iterator and executes in a way similar

to NestedDOMNodeIterator. Besides the base and child iterators, it also contains predicates

or filter expressions that need to be evaluated against each node and returns only those nodes

in the sequence which satisfy the predicates. If a node fails to satisfy a given expression, the

iterator moves forward to read the next node. This iterator would be very helpful in evaluating

WHERE clauses which contains predicate filters.

4.2.15 PrecedingNodeIterator

This iterator is used to return all the preceding nodes that are not ancestors of the cur-

rent node. It involves three iterators inter-twined in a complicated fashion. It initially cre-

ates an AncestorNodeIterator to read all the ancestors of the current node. It then sets up

a NestedDOMNodeIterator with the AncestorNodeIterator as the base iterator and Preced-

ingSiblingNodeIterator as the child iterator; the preceding siblings of all the ancestor nodes

are returned. It further sets up another NestedDOMNodeIterator with the previous iterator as

the base iterator and DescendantSelfNodeIterator as the child iterator; the descendants of all

the previous iterator are returned. The iterator essentially performs the following function: for

all the ancestors of the current node, it reads the descendants of each of the previous siblings

of each ancestor.

4.2.16 FollowingNodeIterator

This iterator is used to return all the following nodes that are not descendants of the cur-

rent node. It again involves three iterators inter-twined in a complicated fashion. It initially

creates an AncestorNodeIterator to read all the ancestors of the current node. It then sets

up a NestedDOMNodeIterator with the AncestorNodeIterator as the base iterator and Follow-

www.manaraa.com

28

ingSiblingNodeIterator as the child iterator; the following siblings of all the ancestor nodes are

returned. It further sets up another NestedDOMNodeIterator with the previous iterator as the

base iterator and DescendantSelfNodeIterator as the child iterator; the descendants of all the

previous iterator are returned. The iterator essentially performs the following function: for all

the ancestors of the current node, it reads the descendants of each of the following siblings of

each ancestor.

4.2.17 ValueResultIterator

This iterator is used to return the results associated with a query expression. The results

could either be directly streamed from the storage or could be stored as intermediate results

on the disk at some other location. The iterator returns the result nodes one at a time along

with any tag information associated with them.

4.2.18 Native Iterators

Besides the iterators used for returning elements based on a hierarchy, there exists a couple

of native iterators which function at the storage level: DiskIterator and PageIterator. These

iterators are used to read the pages on disk sequentially with the nodes that they contain and

to perform page related operations such as obtaining a DOMNode given a pageId and a node-

Offset, reading the attributes associated with a specified node such as children,siblings,parent

etc. These iterators are used consequentially in almost all of the iterators discussed before and

form the core of the linkage between CanStoreX and DOM.

4.3 Processing Intermediate Results

The iterators remove NodeLists from the Kweelt implementation which enhances the per-

formance of the application to a great extent. However, when the queries involve lot of sub-

querying, the intermediate results are still stored in the main-memory which would turn out to

be a show-stopper in the event of sub query returning huge results. To overcome this issue, the

intermediate results are stored onto the same storage space in different sets of pages. These

www.manaraa.com

29

pages are linked to each other; hence only the starting page number is required to iterate

through these pages. Since the result could contain different items, a storage format for the

intermediate results has been developed and implemented. This section would discuss about

the format of the intermediate data in detail.

4.3.1 Intermediate Results Storage Format

The intermediate results are ideally the end-products of nested queries which need to be

evaluated / compared with the result of the outer query. To facilitate this comparison, the

nodes are stored onto the disk and an iterator is set up on top of the storage to read these

nodes one at a time. The resulting nodes could either be nodes in the xml document or

could be strings or numbers which happen to be the result of processing (such as the result

of aggregate functions). To differentiate between the two types, a tag is added to each node

to determine if the node qualifies to be a DOM node or a literal string. The resulting node

structure would be (1,pageId,nodeOffset) or (2,LiteralValue). The first data refers to the type

and if it is ”1”, the node is considered to be a DOM node and the pageId and nodeOffset

information are retrieved. If it is ”2”, the node is a literal string and is read accordingly.

Since the intermediate results could contain other tags imposed by the query, these tags are

also embedded in the storage format. A typical intermediate result page corresponds to the

resulting XML document specified in Figure 4.1.

www.manaraa.com

30

Figure 4.1 Intermediate Results as a XML Document

The E, E1 and E2 tags are specified in the XQuery, ”;” symbol is used to delimit the

information present on the storage and the starting tag determines the type of node. This way

of representing nodes is more generic and any intermediate information could be captured and

www.manaraa.com

31

stored in this fashion.

A page is composed of several such nodes and node information. Ideally, it would turn out

that a single page would not be sufficient to store all the nodes. To counteract this, several

pages are being used to store the node structure and these pages are inter-linked to each other.

The first 4 bytes of every page are specially reserved to store the next page Id that the page

points to with the exception being the last page which would store the pageId of ”0”. The

allocation and deallocation of these pages are completely handled by the buffer manager; it

allocates a page whenever it is requested and deallocates it when the user requests it to do so

after processing. The flexibility of storing the intermediate results onto the storage structure

allows the application to handle documents of any size. Further since the storage is native to

the application and the pages are duly deallocated, no wastage of space occurs too. A sample

page with the node information is specified in Figure 4.2.

www.manaraa.com

32

Figure 4.2 Intermediate Results in a Page format

4.3.2 Result Iterator

An iterator has been developed to read the results from the disk and pass it on to the ap-

plication. The iterator inherits all its features from the Value class and is hence referred to as

www.manaraa.com

33

ValueResultIterator. The inheritance feature allows the application to pass any value objects

to the query evaluation engine and the corresponding instance is then casted for further pro-

cessing. Thus ValueResultIterator is comparable with other Value objects such as ValueString,

ValueNum, ValueNodeList etc. and is primarily used for manipulation of temporary results.

4.4 Conversion of recursive methods to iterative ones

The Kweelt implementation possesses quite a lot of recursive methods to perform traver-

sal and computation on tree structures. These methods consume a lot of main-memory by

building function stacks and diminish the efficiency of the application. This limitation has

been removed by converting all such recursive methods to iterative ones where a stack is used

to store the temporary levels of recursion. The information on the stack is retrieved when-

ever it is required and processed upon accordingly. The conversion has been quite helpful in

BindingTree class where several bind variables are evaluated recursively. The iterative code

ensured that the variables are evaluated in the specified order and any intermediate informa-

tion are properly maintained in the stack. The enhancement allowed the application to process

documents beyond 10G in size which used to terminate with a ”OutOfMemoryError” before.

A few other places where the iterative version served its purpose are (1) Iterators to read

nodes based on a specified hierarchy such as DescendantNodeIterator, FollowingNodeIterator,

PrecedingNodeIterator etc. (2) De-pagination of the document rooted at a specific node (3)

Evaluation Methods for the bind variables.

4.5 Re-implementing the basic Kweelt functionality

The preliminary version of Kweelt was originally developed assuming smaller documents

and complete usage of main-memory due to which the application stopped working even for

documents up to 10 MB or beyond in size. A complete redesign of the functionality was

required to enable the application to process very large documents by involving the use of

disk than main-memory. As a result, the primitive methods are all re-written to process

information with a limited amount of memory and store the temporary results onto the disk.

www.manaraa.com

34

The primary change involved was with the evaluation of FOR and LET clauses to cope up with

multiple bind variables (the query could contain several FOR/LET clauses some separate while

a few inter-twined with each other). Further, the QuiltExpression and several other classes

were modified to store the temporary results onto the disk and return a ValueResultIterator

object. The principles of object-orientation enabled the method interfaces to remain intact

while the implementation was modified to suit our purpose. A major accomplishment of the

new implementation is that the original Kweelt interfaces still remain intact and unchanged

while only the functionality of these modules had been revamped. This would allow any other

user to plug-in his own modifications with only the knowledge of Kweelt interfaces. The re-

implementation is expected to make Kweelt scalable in terms of size and structure and allows

the flexibility to query documents with a minimal set of requirements for main-memory and

without any limitations for the document size.

4.6 LET Clause Evaluation

The new implementation of Kweelt extends the default implementation for both the FOR

and LET clauses; however the LET clause offers functionalities such as performing aggregate

operations on the document which are absent with a FOR clause. These operations pertain to

COUNT,SUM,AVG,MAX,MIN for each of the bind variables. The default implementation used

to perform these operations only on demand i.e. only when the user requests the application

to perform a specific aggregate function. The new implementation exploits this window of

opportunity by computing all the functions at a single execution. At a later point of time,

if and when the client requests for particular aggregate functions are encountered, the value

is read directly from the table and returned to the client. The stream-based computation of

aggregate functions is rather inexpensive and this strategy avoids repetitive traversal of the

document and saves a lot of processing time and resources. In some queries a let variable is only

used for aggregation. This can be detected by a look-ahead mechanism during compilation. If

this is the case, there is no need to save the list of nodes bound to the let variable.

www.manaraa.com

35

With the above specified enhancements incorporated into the model, the application has

been tested for a varied number of queries which are structurally and functionally different.

The next section focuses on the type of queries that are being developed to test the application

and evaluate its performance throughput. A more comprehensive scrutiny of the code revealed

that quite a few enhancements do exist which could improve the efficiency much higher.

www.manaraa.com

36

CHAPTER 5. XQUERY SPECIFICATION

The chapter deals with the various XQuery specifications that have been tried and tested

with the query engine. Since the original implementation of Kweelt was confined to Quilt,it

works only for a minimal subset of the XQuery language. Kweelt does not support quite a

few advanced features such as functions, complex operators etc. This section would describe

in detail the features that are supported by the new engine along with sample queries. To

illustrate the queries, consider an organizational setting where there exists two documents

Employees.xml and Departments.xml containing the information about an organization’s em-

ployees and departments respectively as specified in Figure 5.1.

www.manaraa.com

37

Figure 5.1 Sample XML Documents

www.manaraa.com

38

5.1 Simple form of FOR

The most primitive of all XQuery operations is the ”FOR” clause. The clause is very

similar to the ”FROM” clause used in SQL and is used to iterate over nodes in a specific

XML document and along a specific path. The clause supports expressions from the XPath

language including predicates defined in the path. Predicates are filters that constitute a

XPath expression which are used to evaluate nodes for specific criterion or a set of criteria and

return only the filtered nodes. The FOR clause is followed by a return clause, optionally via a

where clause. A simple FOR expression without a where clause is illustrated in Figure 5.2.

Figure 5.2 FOR Query

In the above mentioned example, the ”/” and ”//” are the XPath expressions specifying

”children” and ”descendant” nodes respectively. The ”[/location = ’United States’]” refers to

the predicate filter returning nodes which satisfy the ”location” constraint. The return clause

contains tags E, E1 and E2 used to wrap the resulting nodes.

www.manaraa.com

39

5.2 FOR together with WHERE

The ”FOR” expression, as mentioned before, could be used in conjunction with the ”WHERE”

clause to filter nodes based on a specified constraint(s). The functionality of such an expression

would be identical to that of a ”FOR” clause used with a predicate with the ”where” clause

substituting for the predicate filter. The usage of ”for” with a ”where” is analogous to that

of ”from” with ”where” in a traditional SQL syntax. A sample query with FOR-WHERE

appears in Figure 5.3.

Figure 5.3 FOR-WHERE Query

The query is the same as the previous query written with a predicate filter and would

return results identical to those of the previous one.

5.3 FOR-FOR Clause

The ”FOR-FOR” expression is used to combine multiple XML documents and return results

that spans over several of the documents. The expression facilitates the join of documents that

need to be processed for some common information. The query syntax is similar to a ”for”

statement with the only exception being that the documents could be specified either with

www.manaraa.com

40

multiple ”for” commands or with a single ”for” command with the documents delimited by

a comma. The processing time of this operation increases quadratically as the documents

increase linearly in size since it involves comparing several documents at a time. The current

implementation provides a brute-force technique to evaluate the query with each node of the

outer document being compared with all nodes of the inner document every time.

There would arise a need to determine the list of employees along with their supervisor

information. The query specified in Figure 5.4 answers such a requirement.

Figure 5.4 FOR-FOR Query

5.4 FOR-FOR-WHERE Clause

As the case is with ”FOR-WHERE”, a ”FOR-FOR-WHERE” expression is semantically

similar to that of a ”FOR-FOR” expression with a predicate filter. The query mentioned in

Figure 5.5 on the XML documents ”Employees.xml” and ”Departments.xml” would return the

same results as that were returned by the previous query.

www.manaraa.com

41

Figure 5.5 FOR-FOR-WHERE Query

5.5 LET Clause

A ”LET” expression is used to operate on a collection of nodes rather than individual

nodes. It facilitates set theoretic operations, quantifiers, and computes aggregate information

on the collection such as count, sum, avg, max and min. The clause does not have a direct

analogy with the SQL language which makes it a powerful and a vital expression of the XQuery

language. The construct closest to let expression in XQuery in SQL is the group by clause. In

SQL group by comes after the where clause that eliminates tuples that may not be of interest.

There can be only one group by in a query block where as let can be used multiple subsets

based upon independent criteria. In SQL tuples and groups are filtered by where, and having

clauses, respectively, whereas in XQuery a single where clause takes care of several types of

nodes as well as forests (collections of trees each rooted at a specific node). There could also

exist multiple let variables each referring to its own forest. To cite an example, two forests

could be compared based on their size (total set of nodes) or based on their depth.

An example to elucidate the ”LET” clause is provided in Figure 5.6:

www.manaraa.com

42

Figure 5.6 LET Query

Similar to a ”FOR-FOR”, let variables could also be used in conjunction along with pred-

icate filters and also with a WHERE clause to check the forest for specified criteria as shown

in Figure 5.7.

Figure 5.7 LET-LET Query

www.manaraa.com

43

The above example evaluates two forests (1) a forest containing the employees information

who work in United States and (2) a forest containing the employees who work in the specified

department and earn more than 80000. The second forest is evaluated for the total number

of nodes and only when it is greater than or equal to 20, the average of salaries and the total

salaries of all employees belonging to the first forest is displayed. In other words, the query

could be phrased in English as ”For every department whose employee work in the United

States, evaluate if the department has more than 20 employees who earn more than 80000 and

return the average and total salaries of all such departments considering all employees who

work in the department irrespective of their salary”. Such a query becomes quite complicated

in SQL requiring more than one query block.

5.6 FOR-LET Clause

A ”LET” Expression returns a forest of nodes which is evaluated for set properties. There

exists some scenarios when the forest is required to be traversed one node at a time to evaluate

each node or to perform node specific computations. To counteract such situations, a LET

clause is allowed to be combined with a FOR clause to iterate over the nodes. This functionality

possess the distinct advantage that the forest could be verified either for group semantics

or each node of the forest could be verified for individual element semantics.The clause is

frequently used in queries to exploit this functionality and to offer the capability to query

forest information. A sample FOR-LET query is given in Figure 5.8.

www.manaraa.com

44

Figure 5.8 FOR-LET Query

5.7 ORDER BY Clause

The ”ORDER BY” clause is used to sort the result nodes in a specific order. The order of

sorting is specified by the keywords ”ASC” and ”DESC” with the default being ASC. Multiple

attributes could be specified in the sort clause in which case the sorting happens with the

attributes in the order prescribed. Further, the type of sorting could vary with each and every

attribute in which case the sorter adheres to the required standards. For example, a sort clause

could contain ”ORDER BY Salary desc, first name asc, DOB desc”. The clause specifies the

sorter to sort data based on the salary in the decreasing order. For employees with the same

salary, the sorter is expected to sort them based on their first names in the ascending order and

for people with the same first name, sort the results from older to younger. A simple example

of SORT clause is mentioned in Figure 5.9.

www.manaraa.com

45

Figure 5.9 SORT Query

The default implementation of Kweelt provided an internal sorting algorithm in which

the nodes are sorted internally in the main-memory. Apparently, the application did not

scale beyond documents of 10 MB in size due to the main-memory limitation. The new

implementation features an external sorting strategy involving the storage space and sort-and-

merge algorithm which helped the application to scale up to documents of 10 GB in size. The

following chapter discusses the sort algorithm and its implications in detail.

5.8 Attribute Clause

The ”@” symbol is used to indicate attributes of a node and any expression involving the

”@” symbol would evaluate the queries on the attributes pertaining to the node rather than

the node or its children. This could be used anywhere in the query ranging from the bind

variables to the predicate filters to the return clause. A simple example for the attribute

clause is specified in Figure 5.10.

www.manaraa.com

46

Figure 5.10 Sample Query involving Attributes

5.9 Object-Oriented Clauses

Besides the regular FLWR expressions, the XQuery application also supports quite a few

object-oriented clauses which are used to reference objects based on their Id attribute. Object-

oriented clauses are required to maintain references and hierarchies between nodes and to store

the common attributes pertaining to a set of nodes in its parent node. A simple example for

reference would be an organization database wherein several employees work with the same

department. The department information need not be repeated for every employee but rather

be stored in a parent node which is linked (pointed) to by each of the employee node. This

saves a lot of storage space but still maintains the employee-department linkage and could be

followed through to retrieve the information pertaining to every employee. This referencing

mechanism could also be used to build hierarchies. The following sections describe the object-

oriented clauses that are being supported by the application and their query syntax.

www.manaraa.com

47

5.9.1 Typed References Clause

The Typed Reference Clause (or more commonly referred to as the ”arrow operator”) is

introduced in Quilt and is used to dereference a pointer pointed by an IDREF attribute to

the corresponding element node. The clause is predominantly used in conjunction with the

attribute clause since the attribute normally contains the Id of every node. An expression

specified by the arrow operator such as ”EmpId–Person@PId” indicates that given an EmpId,

search for Person objects with the PId attribute matching the EmpId and return the Person

Node. This expression is ideally used for referencing and inheritance purposes.

To elucidate the concept further, consider an object-oriented scenario consisting of Person

Nodes with the Attributes PId and the children nodes to be Name, DOB. Consider a company

setting containing employee nodes with EmpId as the attribute and PId, DName, Salary as

the children nodes. An XML representation of the same is depicted in Figure 5.11:

Figure 5.11 Sample Object-Oriented XML Document

www.manaraa.com

48

A path expression to extract the DOB of an employee given an employee Id would be:

/Employee[/@EId = "E001"]/As_Person/@PersonId -> {Person@PId}/DOB

The basic advantage of such an approach would be that multiple nodes could reference

attributes from a single node and the information is not required to be repeated every time.

This would save a lot of space both in terms of size and structure of the document and

would provide a central resource to add, delete and edit parent information. The parent-child

relationship is maintained through the arrow operator and this could in theory extend to any

number of levels required. With an appropriate database design in place, it also helps in

making user queries more natural avoiding spurious joins.

5.10 XMark Queries

The XML documents used in the application are generated from a tool called XMark.

XMark [37] is a benchmarking technique which creates a synthetic XML document. XMark

provides a scalable document database and a comprehensive set of queries. The XML docu-

ments generated model an Internet auction website, a typical e-commerce application. The

main entities are person, open auctions, closed auctions, item and category. The hierarchical

schema of the documents is depicted in Figure 5.12.

www.manaraa.com

49

Figure 5.12 Hierarchical Schema for XMark XML Document

XMark has come up with a set of 20 XQueries to be evaluated on the documents. These

queries explore through the various possible paths in the documents and are quite useful to

benchmark the query performance and throughput. The application is tested for accuracy and

efficiency by running these queries on documents pertaining to different sizes ranging from 100

KB to 100 GB in size. These queries help evaluate the throughput of the query evaluation

engine and compare the performance of the application to other XQuery applications that

exist. It should be noted that currently no indexes and optimization have been used. These

can be studied and implemented in future to significantly enhance the throughput of queries.

www.manaraa.com

50

CHAPTER 6. SORTING TECHNIQUE

Sorting refers to the process of ordering nodes in a specified order as desired by the user.

Sorting is very useful in quite a few applications such as a library management system where the

books are arranged by specific criteria, student enrollment system where the student records

are ordered by their last name etc. In the context of database, sorting is used by many

external applications and is also used internally to improve the performance of the database

and query evaluation engine. For example to make a join faster, temporary sorted copies of the

operands, that can be large xml documents, could be created. Sorting is extensively used in

creating indices e.g: B+ trees and hashes on existing documents. The feature is implemented

in traditional database systems through the concept of a (record key - record pointer) pair

where the record keys are sorted through a B-tree or a heap and the record pointers specify

the location of the node on the disk. An advantage with the traditional database system is

that the records have fixed length and hence it is convenient to store them in pages and during

sorting two records can be swapped even when they reside in different pages. Swapping is an

important operation in sorting and it becomes problematic when records vary in length leading

to fragmentation. In XML nodes can occupy several pages and moving it from one block to

another can be expensive. Furthermore, a sorting algorithm can move a node multiple times

leading to spurious disk accesses repeatedly.

Fortunately, CanStoreX allows us to solve this issue with its storage structure. As had been

mentioned before, CanStoreX stores documents in pages and have a (pageId, nodeOffset) pair

associated with each node which could be used as a pointer to the node. With this structure in

place, we could consider XML documents to be similar to fixed-size documents and apply the

sorting algorithm. The sorter would now accept a (record pageId, record nodeOffset, record

www.manaraa.com

51

key) triplet and would order the pointers based on the record key. The section would elaborate

more on this structure and the sorting technique that is applied to sort XML nodes.

6.1 Current Implementation

The default version of Kweelt uses an internal sorting algorithm using node lists and a

Map containing these lists. The complete sorting technique is performed only using the main-

memory which apparently leads to the main-memory exhaustion issue. NodeLists are used to

store the nodes along with their hierarchy and every node list is compared node-to-node with

the other lists to determine the precedence and a new NodeList is created every time to store

the ordered nodes. The technique uses a lot of temporary storage in addition to storing the

entire document in the main-memory which is not feasible and extensible for larger documents.

6.2 Proposed Sorting Technique

The new technique proposed for sorting is ideally required to consume less of main-memory

and use the storage on the disk for the temporary results. The NodeLists are replaced by the

Iterators mentioned before to read the node and its corresponding hierarchy. The sorter would

now involve both the main-memory and the storage to perform the sorting technique and hence

would involve an external sorting algorithm. The implementation details and the complexity

of the algorithm are discussed below.

6.2.1 External Sorting Algorithm

External sorting is essentially done in two phases: creation of runs and merging. A run is

a certified sorted sequence of nodes. The initial phase is accomplished by reading sets of nodes

onto the main memory and sorting them using an internal sorting mechanism. The sorted

segments (runs) are now written onto the storage on to a different location. The latter phase

merges these sorted runs to form larger runs until a single certified run is obtained which would

essentially have sorted all the nodes. The following section provides an example to elucidate

www.manaraa.com

52

on the sorting mechanism. To avoid loss of generality, the example assumes documents of fixed

size which could be replaced by the key-pointer triplets of the nodes.

Consider a sorter required to sort 1000 records which are stored on the disk in 10 pages

each containing 100 records. There are 3 buffers available to be used. With this setup, the

sorting phases are explained below:

6.2.1.1 Creation of Runs

The initial phase involves reading pages that could fit in the buffer, sorting them individu-

ally through an internal sorter and writing them back onto the disk. Since there are 3 buffers

that are available to us, every time a set of 3 pages are read from the disk, sorted and written

onto the disk in a different location. The end of this phase would provide us with 4 runs each

containing 3 pages sorted in order except the last run which would contain only one page.

The buffer configuration and the storage structure after the creation phase are illustrated in

Figure 6.1.

www.manaraa.com

53

Figure 6.1 Sorting Configuration

6.2.1.2 Merging

Merging involves reading multiple runs at a time and merging them to form one larger run.

The process is repeated for all the runs until a single run is obtained in which case the given set

of nodes are sorted. To illustrate our example, the 3 buffers are configured as specified in figure

to set up two input streams and one output stream. This configuration would ideally be used

to merge two runs at a time. The records are sequentially read from each of the input stream,

compared for precedence and the appropriate record is written onto the output buffer. The

next record from the corresponding input stream is read and the process is repeated until either

of the input stream runs out of records in which case all the records from the other stream is

written directly onto the output buffer. The records are written continuously onto the output

buffer, which when full, writes the records onto the storage and maintains a reference to the

same. The merging technique is depicted in the Figure 6.2.

www.manaraa.com

54

Figure 6.2 Merge Configuration

www.manaraa.com

55

At the end of the first pass of merging, there would be 2 runs with the first one containing

6 records and the second one consisting of 4 records. The process is repeated one more pass

to obtain one single run of 10 records at which point the nodes are sorted as shown in the

Figure 6.3. A pass consists of reading a set of pages, sorting them and writing them back onto

the disk. It leads to a reduced number of runs with each run pointing to a larger set of records

that had been sorted. The number of passes needed to sort a set of records is a good indicator

of the performance of the algorithm. The current implementation uses a 2-way merging and

this could be replaced by a k-way merging to better improve the sorting performance.

Figure 6.3 Merge Technique

www.manaraa.com

56

6.3 Implementation Specifications

The sorting technique mentioned above is implemented with the help of Iterators, buffers

and linked list of pages. Further, since the runs need to be stored on the disk, a special storage

format is developed to store the runs and refer them during the merging process. This section

would discuss the implementation details of the algorithm.

6.3.1 Creation of Linked List of Pages

A certified run in the sorting mechanism is characterized by a set of pages that are pre-

viously sorted. The number of pages in a run would vary from one run to another. Further,

due to the varying length of the keys, a run involving two sets of pages is not expected to

produce a larger run containing exactly the sum of the pages. The new run could, in some

instance, contain pages that are more than the total number of source pages combined. This

requirement hinders the flexibility to use a fixed size data structure to store the pages of a run.

To counteract this, a linked list of pages had been implemented with the algorithm having

knowledge of only the page Id of the starting page. An Iterator is provided to iterate over

the pages from the starting page till the last page returning one record at a time. Every page

stores the Id of the next page in a special location through which the page traversal happens.

The number of such linked lists could, in theory be large for documents involving lots of

records and storing the list in the main-memory would not be feasible and scalable to very

large documents. To avoid this issue, the list of pages are stored in a separate page the Id of

which would be provided to the application. Further, the list of pages could be large enough

to span multiple pages, hence these are written onto multiple pages linked to each other with

the same strategy as mentioned above. In the end, the sorter would be provided with a pageId

containing a set of page Ids each of which points to the starting page of a linked list of pages.

A sample page containing the pageIds is illustrated in Figure 6.4.

www.manaraa.com

57

Figure 6.4 Sample Page Format

Ideally the structure would initially comprise of number of linked lists each pertaining to

one certified run. This number would decrease approximately by half after every pass while

the length of each linked list increases by two folds indicating that there now exists a larger

certified run with more sorted records. At the end of the process, there would exist one linked

list containing all records in a sorted fashion.

6.3.2 Storage Structure

The sorting technique involves the temporary results to be written onto the disk. Since

the records involved could span more than a single page, a special storage format needs to be

www.manaraa.com

58

developed to store these on the storage and retrieve them in the specified order. The informa-

tion to be stored involves the record key and the record pointers, essentially a (record-page-

id,record-node-offset,record-key) triplet. While the record-page-id and the record-node-offset

are fixed-size in length, the record-key is in principle variable-size. To handle this requirement,

the pageId and nodeOffset are initially stored in the page followed by the record key stored as

a string terminated with a special character. The termination character is checked for every

time to determine the end of the record key. The initial few bytes are specifically reserved

for the Id of the next page with the last page containing a 0. A typical storage page with

the record structure is depicted in Figure 6.5. The record key used is the ”location” attribute

while the pageId and nodeOffset are converted from integer to bytes and stored in the page

instead of storing them as literal strings.

www.manaraa.com

59

Figure 6.5 Sort Results Storage Page Format

The technique mentioned above is completely implemented and tested for accuracy and

performance. The issues of main-memory consumption and internal sorting overhead are re-

moved from the application making it functional to perform sorting on documents of any size.

The mechanism consumes quite a few pages from the storage but the pages are deallocated

www.manaraa.com

60

once the algorithm is completed and the results are returned back to the client. For accuracy

purposes, in the process of sorting, each of the runs is individually verified to ensure that there

are no intermediate false positives.

www.manaraa.com

61

CHAPTER 7. EXPERIMENTAL RESULTS INTERPRETATION

This section describes the experiments that had been conducted on the XQuery application

and the implications of the same. The chapter begins with a description of the computer system

used for the experimental purposes. It further introduces a couple of performance metrics used

to evaluate the application and then elucidates the results of the experiments.

7.1 Computer System Benchmark

The machine set up for the experiments possesses the following configuration:

7.1.1 CPU

The processor used was a AMD Athlon 64 X2 dual core processor 3800+ with a speed of

2.01 GHz, 64+64 KB L1 cache and 512 KB L2 cache.

7.1.2 RAM

The main memory used had a capacity of 1 GB.

7.1.3 Hard-disks

A total of 3 hard-disks were used to run the queries. The first hard-disk is a Serial ATA

disk with a capacity of 80 GB and with manufacturers rating of 7200 RPM, 300 MB/s data

transfer rate and 16 MB internal cache.This was primarily used to store the operating system

files and the source code of the application along with the XMark generated XML files.

The second hard-disk is a Serial ATA disk with a capacity of 465 GB and with manufac-

turer’s rating of 7200 RPM, 300 MB/s data transfer rate and 16 MB internal cache. This was

www.manaraa.com

62

used as the storage for the application to store the XML documents in the paginated binary

format.

The third hard-disk is a Serial ATA disk with a capacity of 465 GB and with manufacturer’s

rating of 7200 RPM, 300 MB/s data transfer rate and 16 MB internal cache. This was used

as the output storage to store the results of XQuery in a binary format. The structure of the

output storage resembles that of the application storage and the similarity is maintained to

determine the speed of data transfer across the disks.

All the disks were formatted with NTFS using 16KB allocation unit.

7.1.4 Operating System

Windows XP with service pack 2 was used as the operating system.

7.2 Application Benchmark

The application had quite a few benchmarks, in contrast to the system, which were set to

be in synchronous with the characteristics of the computer system.

7.2.1 Pagination PageSize

The PageSize was set to be 16 KB in size to be in sync with the allocation unit of the

operating system.

7.2.2 Storage Files

The files on the disk representing the CanStoreX storage were RandomAccessFiles created

using Java. These files grow dynamically as and when information is appended to them which

are constrained by the characteristics of the operating system. To avoid this, the files are

initially filled with null values ensuring that the pagination process does not result in the files

being expanded.

www.manaraa.com

63

7.2.3 XML FileSize

The XML documents were generated from a tool called XMark. The tool generates a file

with the specified size while the characteristics of the document such as fan-out and depth are

internally taken care of by the utility. The documents generated were of size 100 KB, 1 MB,

10 MB, 100 MB, 1 GB, 10 GB, 50 GB and 100 GB. The smallest XMark could generate was

around 45 KB.

7.2.4 Pagination Strategy

The pagination algorithm had two strategies implemented: fixed-size nodes and variable-

size nodes.

7.3 Performance Metrics

A couple of performance metrics had been devised to evaluate the performance of the

application and to interpret the results in a quantitative fashion. The section provides a brief

definition of the metrics.

7.3.1 Running Time

The running time is defined to be the total time in seconds that the application requires to

produce the expected result. This includes the time spent in parsing the query, initializing the

query engine, reading from the storage, writing/reading the intermediate results and writing

the results onto the output storage.

7.3.2 Throughput

The throughput is defined to be the amount of data processed per second and is measured

in mega bytes per second. This metric is a more realistic one and is used to compare the

performance of application on documents of different size and on queries of varying levels

of complexity. For queries involving a single document, the metric is directly measured by

dividing the size of the document by the time taken to evaluate the query. For queries involving

www.manaraa.com

64

multiple documents (for example 2 documents), the metric is evaluated as follows: For each

node processed in the outer document, the inner document would be traversed completely

once. Hence the total size of documents would be estimated as the number of nodes in the

outer document multiplied by the size of the inner document. This total size is then divided

by the total time spent in processing to obtain the throughput.

7.4 Result Interpretations

Appendix A depicts the results of the experiments conducted on documents with a linear

increase in size. The XQuery expressions could be ideally classified into two groups one with

a ”/” path expression involving only a specific portion of the document and the other with

a ”//” path expression involving a traversal of the entire document. The throughputs of the

application for ”/” expression are evidently quite higher than that of ”//” expressions when

run on the same document due to the aforementioned behavior.

Figures 7.1 - 7.4 provide a graphical representation of the throughput of the query engine

on documents of various sizes and on queries of varying levels of complexity. Figure 7.1 depicts

the performance of the application on simple queries which scan only a small portion of the

XML document while Figure 7.2 reflects the performance on queries which involve parsing the

entire document. The efficiency of the new sorting algorithm is also captured in Figure 7.3

and Figure 7.4 represents the performance on a few XMark queries that had been executed.

www.manaraa.com

65

Figure 7.1 Throughput of query engine on simple queries

Figure 7.2 Throughput of query engine on complex queries

www.manaraa.com

66

Figure 7.3 Throughput of query engine on SORT queries

Figure 7.4 Throughput of query engine on XMark queries

A general increase in the throughput is observed as the document increases linearly in

size. The increase in the throughput is due to the extra time the application requires to parse

www.manaraa.com

67

the input query and construct the query tree before traversing the document. This extra

time is quite evident in the case of small documents where the processing time involved with

the document is very less. Since huge documents take some time to be traversed completely,

the throughputs obtained from these are appropriate and hence shows a trend of increase in

throughput. The values may not be accurate for documents up to 100 MB in size because the

application takes very little time to process these documents and the time may not be captured

very precisely.

The results indicate the flexibility and the extensibility of the application in being able to

process documents up to 100 GB in size. While the results mentioned pertain to the basic query

syntax, there are still quite a lot of complex query patterns that could be used to evaluate the

performance of the application which would give a more realistic estimate of the application’s

efficiency. One good source would be from the XMark benchmark queries which could be used

to evaluate the utility comprehensively.

www.manaraa.com

68

CHAPTER 8. CONCLUSIONS AND FUTURE WORKS

The chapter closes the thesis with the conclusion and some suggested future works.

8.1 Conclusion

The XQuery engine provides the extension to the binary version of CanStoreX to evalu-

ate and execute queries on huge XML documents. It removes the current problems existing

with the Kweelt implementation such as main-memory exhaustion and in-memory storage of

intermediate results. The storage structure provided for intermediate node storage and sorting

technique makes the query engine extensible and allows it to scale to documents of any size and

structure. The utility executes almost all of the basic query patterns associated with XQuery

on documents of any size.

The experimental results indicate the throughput of the application to increase linearly in

accordance with the size of the document and the complexity of the query. The throughput

varies accordingly for queries involving single or multiple documents.

This proves that CanStoreX has indeed been extended from a raw storage format for XML

documents to a complete storage structure for XML documents which could be queried and

the required results could be extracted. A lot of query patterns still need to be included in

the application but the current implementation would serve as a platform to store and retrieve

huge documents.

8.2 Future Work

As mentioned before, there are still a lot of query patterns and operators/functions that

need to be integrated into the platform to make it a full-fledged XQuery runner. Besides,

www.manaraa.com

69

object-orientation and reference queries need to be incorporated into the query engine. A

user interface containing the various options needs to be provided to make the application

user-interactive and reduce the hassles required on part of the end-user.

The XML documents are currently being generated from XMark onto a XML file which is

then being paginated. This could be replaced with an utility which directly reads the XMark

generated feeds without writing them onto a XML file. This would remove the storage space

required to store such XML files which could in turn be used as part of the application storage.

A project involving this extension is currently in the pipeline and is expected to be integrated

into the application sooner. Several applications like these could be coupled on top of this

application to enable quick, easy and user-interactive way of storing and handling huge XML

documents.

The sorter currently uses a simple sort-and-merge technique through a 2-way merging

algorithm. This could be replaced with a more efficient sorter involving long runs, k-way

merging, using 2 disks for the algorithm and using simple / advanced techniques to sort the

nodes. Further, several other operators such as UNION, INTERSECT, DISTINCT could be

implemented on the sorted nodes.

On the optimization part, a lot of features such as indexing, directories, plan generation

etc.. needs to be introduced into the query runner. Besides, XQuery is an expression oriented

language. The query engine could handle only FLWR expressions; XQuery needs to be made

schema-aware to incorporate optimization and object-orientation while advanced features such

as dispatching are yet to be introduced.

Currently only XMark is being used as the benchmarking technique to determine the

performance of the application. This could be further improved by using other benchmarking

techniques such as XMach, XQuery test suite etc. Using diverse set of benchmarking techniques

would be useful in comparing the throughput of the query engine with other existing XQuery

implementations.

www.manaraa.com

70

APPENDIX A. EXPERIMENTAL RESULTS

This appendix focuses on the performance metrics of the XQuery application. The chapter

contains the results of the various experiments conducted on the application with documents

of different sizes and with queries of varying levels of complexity. Some of the features covered

in this appendix are the query description, the size of the document(s) the query is acted upon,

the running time in seconds and the throughput of the application in megabytes per second.

Some entries may be labeled with n/a implying that the results are not available for those due

to time and space limitations. The value of throughput may not be accurate for documents

of size up to 100 MB due to the very little time consumed with these documents. The time

measurements in these cases are usually small and are not captured accurately.

Query Results

The tables are classified based on the type of queries they were tested with. Every table

contains documents starting with size 100 KB reaching up to 100 GB in size. The running time

of the query in seconds and the throughput in MBytes/sec are captured and are presented in

the tables. In addition to the basic FLWR expressions, the application is tested with a few

object-oriented queries and benchmark queries from XMark the results of which are specified

too.

CanStoreX Performance Results

This section discusses about the general performance of the CanStoreX architecture in

terms of paginating and depaginating XML documents. The results of creating the binary

storage from the raw XML documents and re-creating thee original XML documents are pro-

www.manaraa.com

71

vided in Table A.1 and Table A.2 respectively to compare the performance of CanStoreX

application with the performance of the XQuery.

Table A.1 Pagination Results

Document size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 0.656 0.152

1 1.031 0.970

10 4.297 2.327

100 66.247 1.510

1000 647.600 1.544

10000 3547.099 2.819

100000 40703.337 2.457

Table A.2 De-pagination Results

Document size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 0.703 0.142

1 1.000 1.000

10 5.344 1.871

100 77.639 1.288

1000 771.491 1.296

10000 4776.175 2.094

100000 n/a n/a

FOR-Clause Performance Results

This section is used to describe the performance of a simple FOR-clause without any

predicates or filters on documents of various sizes. The clause is evaluated for two different

www.manaraa.com

72

types of expressions; the first type involves clauses with the ”/” path expression the results of

which are provided in Table A.3 and the second type involves clauses with ”//” path expressions

for which the results are provided in Table A.4.

Table A.3 Simple FOR-Queries with a ”/” path expression

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 0.797 0.125

1 0.922 1.085

10 1.515 6.601

100 7.264 13.767

1000 67.575 14.798

10000 387.141 25.830

100000 3913.728 25.551

Table A.4 Simple FOR-Queries with a ”//” path expression

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 1.000 0.100

1 2.484 0.403

10 15.811 0.632

100 184.950 0.541

1000 1854.781 0.539

10000 14357.222 0.697

100000 n/a n/a

A variant of FOR-clause uses the ”ORDER BY” operator which is used to sort the results

according to the specified criteria and in the prescribed order. The FOR-expression along with

www.manaraa.com

73

the sorting mechanism is evaluated for various documents and the results could be found in

Table A.5 and Table A.6.

Table A.5 FOR-Queries with an ORDER BY clause along with a ”/” path

expression

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 0.844 0.118

1 1.062 0.942

10 2.234 4.476

100 16.234 6.160

1000 265.303 3.769

10000 3801.642 2.630

100000 n/a n/a

Table A.6 FOR-Queries with an ORDER BY clause along with a ”//”

path expression

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 1.047 0.096

1 2.765 0.362

10 17.718 0.564

100 218.211 0.458

1000 2693.787 0.371

10000 16310.540 0.613

100000 n/a n/a

www.manaraa.com

74

FOR-WHERE-Clause Performance Results

The FOR-WHERE clause is used to iterate over document nodes evaluating each node for

the specified criteria or filter specified and returning only the filtered set of nodes. This section

describes the performance of such clause on documents of various sizes. As with FOR, this

expression is evaluated for both ”/” and ”//” path expressions and the results are depicted in

Table A.7 and Table A.8 respectively.

Table A.7 FOR-WHERE-Queries with a ”/” path expression

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 0.812 0.123

1 0.922 1.085

10 1.563 6.398

100 7.999 12.502

1000 72.227 13.845

10000 459.029 21.785

100000 4580.399 21.832

Table A.8 FOR-WHERE-Queries with a ”//” path expression

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 1.000 0.100

1 2.469 0.405

10 15.655 0.639

100 188.124 0.532

1000 1886.065 0.530

10000 14407.170 0.694

100000 n/a n/a

www.manaraa.com

75

The FOR-WHERE clause is used along with the ”ORDER BY” operator to sort the filtered

nodes in the specified order and criteria. The performance results of a FOR-WHERE clause

with the sorting technique are specified in Table A.9 and Table A.10

Table A.9 FOR-WHERE-Queries with an ORDER BY clause along with

a ”/” path expression

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 0.828 0.121

1 0.969 1.032

10 1.813 5.516

100 12.300 8.130

1000 131.695 7.593

10000 907.370 11.021

100000 n/a n/a

Table A.10 FOR-WHERE-Queries with an ORDER BY clause along with

a ”//” path expression

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 1.016 0.098

1 2.548 0.392

10 16.145 0.619

100 192.104 0.521

1000 1974.347 0.506

10000 15384.864 0.650

100000 n/a n/a

www.manaraa.com

76

LET-Clause Performance Results

The LET Clause is used to evaluate a collection of nodes rather than iterating through each

node at a time. The experiments conducted on the LET clause mostly focus on the aggregate

operations such as sum,count,max,min,avg. Multiple operators are specified to estimate the

efficiency of the application in handling the same. As before, the clause is evaluated for

two different types of path expressions and the results are tabulated in Table A.11 and in

Table A.12.

Table A.11 LET-Queries with a ”/” path expression

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 0.812 0.123

1 0.890 1.124

10 1.375 7.273

100 6.061 16.499

1000 56.376 17.738

10000 268.005 37.313

100000 2685.853 37.232

www.manaraa.com

77

Table A.12 LET-Queries with a ”//” path expression

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 0.984 0.102

1 2.421 0.413

10 15.465 0.647

100 178.206 0.561

1000 1795.595 0.557

10000 13866.641 0.721

100000 n/a n/a

FOR-LET-Clause Performance Results

The LET clause could also be used in conjunction with the FOR clause to iterate through

the forest of trees evaluating each node for any specified filters in addition to the set operations.

This operation involves the functionality of both FOR and LET combined and is evaluated for

the path expressions ”/” and ”//” with documents of different sizes. The experimental results

are documented in Table A.13 and Table A.14.

Table A.13 FOR-LET-Queries with a ”/” path expression

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 0.593 0.169

1 0.719 1.391

10 1.188 8.418

100 5.078 19.693

1000 44.574 22.435

10000 287.285 34.809

100000 2675.322 37.379

www.manaraa.com

78

Table A.14 FOR-LET-Queries with a ”//” path expression

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 1.015 0.099

1 2.765 0.362

10 19.261 0.519

100 233.209 0.429

1000 2337.212 0.428

10000 13977.870 0.715

100000 n/a n/a

FOR-FOR-Clause Performance Results

The FOR-FOR clause is used to process multiple documents by joining them and extracting

information from all of the input sources. For the sake of simplicity, the queries involve joining

only two documents to estimate the overall efficiency of the query. The throughput of these

queries depend on the size of both of the documents and is apparently much higher when

compared to queries operating on single documents. The results provided in Table A.16 and

in Table A.17 depict the performance of these queries.

The tables provided below contain the size of both the documents (referred to as outer and

inner documents) along with the number of nodes present in the outer document. The number

of nodes would vary depending on whether the path expression is ”/” or ”//”. This number

determines the number of iterations the inner document needs to be processed to compute

the overall size of the join operation as specified in the Table A.15. The throughput is now

computed to be the size of the join operation upon the total time spent in processing the

request as depicted in the Figure

www.manaraa.com

79

Table A.15 Node Count on Documents

Document Size No. of item nodes No. of item nodes No. of item nodes

(in MBytes) in /region/namerica in /region/africa in the entire document

0.1 10 1 22

1 100 5 217

10 1000 55 2175

100 10000 550 21750

1000 100000 5500 217500

10000 1000000 55000 2175000

100000 10000000 550000 n/a

www.manaraa.com

80

Table A.16 FOR-FOR-Queries with a ”/” path expression

Outer/Inner Document Size of the Running Time Throughput

(in MBytes) join operation (in seconds) (in MBytes/sec)

(in MBytes)

0.1 / 0.1 0.2 0.734 0.272

0.1 / 1 1.1 1.406 0.782

0.1 / 10 10.1 4.812 2.099

0.1 / 100 100.1 50.789 1.971

0.1 / 1000 1000.1 589.328 1.697

0.1 / 10000 10000.1 4344.445 2.302

0.1 / 100000 100000.1 n/a n/a

1 / 1 6 1.203 4.988

1 / 10 51 3.171 16.083

1 / 100 501 27.889 17.964

1 / 1000 5001 305.098 16.391

1 / 10000 50001 2268.723 22.039

1 / 100000 500001 n/a n/a

10 / 10 560 24.156 23.183

10 / 100 5510 294.723 18.696

10 / 1000 55010 3547.692 15.506

10 / 10000 550010 n/a n/a

10 / 100000 5500010 n/a n/a

100 / 100 55100 3455.946 15.944

Data n/a for documents of higher size

www.manaraa.com

81

Table A.17 FOR-FOR-Queries with a ”//” path expression

Outer/Inner Document Size of the Running Time Throughput

(in MBytes) join operation (in seconds) (in MBytes/sec)

(in MBytes)

0.1 / 0.1 0.2 7.296 0.315

0.1 / 1 1.1 67.135 0.329

0.1 / 10 10.1 651.680 0.338

0.1 / 100 100.1 7897.143 0.279

0.1 / 1000 1000.1 n/a n/a

0.1 / 10000 10000.1 n/a n/a

0.1 / 100000 100000.1 n/a n/a

1 / 1 6 650.288 0.335

1 / 10 51 6255.511 0.347

Data n/a for documents of higher size

FOR-FOR-WHERE-Clause Performance Results

The FOR-FOR-WHERE clause introduces predicates and filters to the FOR-FOR clause

and provides only the document nodes that satisfy a given criteria. The clause is evaluated

against the path expressions ”/” and ”//” the results of which are summarized in Table A.18

and in Table A.19 respectively.

www.manaraa.com

82

Table A.18 FOR-FOR-WHERE-Queries with a ”/” path expression

Outer/Inner Document Size of the Running Time Throughput

(in MBytes) join operation (in seconds) (in MBytes/sec)

(in MBytes)

0.1 / 0.1 0.2 0.813 0.246

0.1 / 1 1.1 0.953 1.154

0.1 / 10 10.1 1.703 5.931

0.1 / 100 100.1 8.139 12.299

0.1 / 1000 1000.1 76.169 13.130

0.1 / 10000 10000.1 555.967 17.987

0.1 / 100000 100000.1 n/a n/a

1 / 1 6 1.266 4.739

1 / 10 51 3.827 13.326

1 / 100 501 33.992 14.739

1 / 1000 5001 361.319 13.841

1 / 10000 50001 2796.192 17.882

1 / 100000 500001 n/a n/a

10 / 10 560 31.429 17.818

10 / 100 5510 370.113 14.887

10 / 1000 55010 4230.877 13.002

10 / 10000 550010 n/a n/a

10 / 100000 5500010 n/a n/a

100 / 100 55100 3842.612 14.339

Data n/a for documents of higher size

www.manaraa.com

83

Table A.19 FOR-FOR-WHERE-Queries with a ”//” path expression

Outer/Inner Document Size of the Running Time Throughput

(in MBytes) join operation (in seconds) (in MBytes/sec)

(in MBytes)

0.1 / 0.1 0.2 7.185 0.320

0.1 / 1 1.1 65.500 0.337

0.1 / 10 10.1 627.823 0.351

0.1 / 100 100.1 8556.843 0.257

0.1 / 1000 1000.1 n/a n/a

0.1 / 10000 10000.1 n/a n/a

0.1 / 100000 100000.1 n/a n/a

1 / 1 6 630.276 0.346

1 / 10 51 6216.832 0.349

Data n/a for documents of higher size

XMark Benchmark Queries Performance Results

This section tabulates the performance of the application in executing the benchmark

queries generated by XMark. These queries are complex involving extensive traversal of the

documents and could be used to evaluate the efficiency of the application. Since the queries

involve XQuery compatible expressions and operators, the application does not support all

queries since it is not a full-fledged XQuery implementation but contains only a subset of the

query patterns with the queries modified to remove the unsupported functions. The tables

provided below depict the throughput of the application for different queries on documents of

various sizes. The XMark generated queries are available at [37].

www.manaraa.com

84

Table A.20 Query 1 Performance Results

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 0.515 0.194

1 0.594 1.684

10 1.047 9.551

100 5.453 18.339

1000 48.076 20.800

10000 315.751 31.671

100000 3180.840 31.438

Table A.21 Query 2 Performance Results

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 0.532 0.188

1 0.703 1.422

10 1.453 6.882

100 11.999 8.334

1000 111.838 8.942

10000 684.766 14.604

100000 6871.183 14.554

www.manaraa.com

85

Table A.22 Query 3 Performance Results

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 0.578 0.173

1 0.797 1.255

10 2.093 4.778

100 22.499 4.445

1000 219.084 4.564

10000 1378.516 7.254

100000 n/a n/a

Table A.23 Query 5 Performance Results

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 0.719 0.139

1 2.078 0.481

10 14.999 0.667

100 191.351 0.523

1000 1934.835 0.517

10000 13866.641 0.721

100000 n/a n/a

www.manaraa.com

86

Table A.24 Query 6 Performance Results

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 0.766 0.131

1 2.891 0.346

10 23.952 0.418

100 318.735 0.314

1000 3213.819 0.311

10000 n/a n/a

100000 n/a n/a

Table A.25 Query 7 Performance Results

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 1.328 0.075

1 5.453 0.183

10 45.969 0.218

100 559.515 0.179

1000 6390.191 0.156

10000 n/a n/a

100000 n/a n/a

www.manaraa.com

87

Table A.26 Query 13 Performance Results

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 2.047 0.049

1 2.062 0.485

10 2.281 4.384

100 2.984 33.512

1000 8.375 119.403

10000 39.952 250.300

100000 380.030 263.137

Table A.27 Query 15 Performance Results

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 2.109 0.047

1 2.297 0.435

10 2.578 3.879

100 8.922 11.208

1000 69.795 14.328

10000 370.613 26.982

100000 3661.805 27.309

www.manaraa.com

88

Table A.28 Query 16 Performance Results

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 0.531 0.188

1 0.562 1.779

10 0.812 12.315

100 2.859 34.977

1000 23.093 43.303

10000 139.603 71.632

100000 1369.408 73.024

Table A.29 Query 17 Performance Results

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 0.531 0.188

1 0.641 1.560

10 1.000 10.000

100 5.531 18.080

1000 49.389 20.247

10000 322.114 31.045

100000 3171.134 31.534

www.manaraa.com

89

Table A.30 Query 18 Performance Results

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 0.547 0.183

1 0.609 1.642

10 0.954 10.482

100 4.891 20.446

1000 42.999 23.256

10000 236.883 42.215

100000 2363.800 42.305

Table A.31 Query 19 Performance Results

Document Size Running Time Throughput

(in MBytes) (in seconds) (in MBytes/sec)

0.1 0.610 0.164

1 1.234 0.810

10 7.031 1.422

100 94.325 1.060

1000 1177.181 0.849

10000 n/a n/a

100000 n/a n/a

www.manaraa.com

90

BIBLIOGRAPHY

[1] Bray, T. , Paoli, J. , Sperberg-McQueen, C. M. , Maler, E. , Yergeau, F. (2006). Extensible

Markup Language (XML) 1.0 (Fourth Edition) W3C recommendation, 16 August 2006.

[2] Bohannon, P. , Freire, J. , Roy, P. , Simeon, J. (2002). From XML schema to relations: a

cost-based approach to XML storage. In Proceedings of the 18th International Conference

on data Engineering (ICDE’02), pages 64-75, San Jose, CA, USA, 2002.

[3] Tatarinov, I. , Viglas, S. , Beyer, K. , Shanmugasundaram, J. , Shekita, E. , Zhang,

C. (2002). Storing and querying ordered XML using a relational database system. In

Proceedings of the 2002 ACM SIGMOD international conference on Management of data,

pages 204-215, Madison, WI, USA, 2002.

[4] Shanmugasundaram, J. , Shekita, E. , Kiernan, J. , Krishnamurthy, R. , Viglas, E. ,

Naughton, J. , Tatarinov, I. (2001). A general technique for querying XML documents

using a relational database system. Special section on advanced XML data processing at

ACM SIGMOD, Volume 30, Issue 3, pages 20-26, 2001.

[5] Bohannon, P. , Freire, J. , Roy, P. , Haritsa, J. , Simeon, J. , Ramanath, M. (2002).

LegoDB: Customizing Relational Storage for XML Documents. In Proceedings of the 28th

VLDB Conference, Hong Kong, China, 2002.

[6] Florescu, D. , Kossmann, D. (1999). Storing and querying XML data using an RDBMS.

IEEE Data Eng Bull 22(3):27-34, 1999.

www.manaraa.com

91

[7] Fiebig, T. , Helmer, S. , Kanne, C. -C. , Moerkotte, G. , Neumann, J. , Schiele, R. ,

Westmann, T. (2002). Anatomy of a native XML base management system. Springer-

Verlag, 2002.

[8] Jagadish, H. V. , Al-Khalifa, S. , Chapman, A. , Lakshmanan, L. V. S. , Nierman, A. ,

Paparizos, S. , Patel, J. M. , Srivastava, D. , Wiwatwattana, N. , Wu, Y. , Yu, C. (2002).

TIMBER: A native XML database. VLDB Journal, 11(4): 274-291, 2002.

[9] Kanne, C. , Moerkotte, G. (2000). Efficient Storage of XML Data. In Proceedings of the

16th International Conference on Data Engineering, page 198, 2002.

[10] Meng, X. , Luo, D. , Lee, M. L. , An, J. (2000). OrientStore: A Scheme Based Native

XML Storage System. In Proceedings of the 29th VLDB Conference, Berlin, Germany,

2003.

[11] Cognetic Systems, Inc. XQuantum: A XML Native Data Store.

http://www.cogneticsystems.com/

[12] Modis, I. Sedna: Native XML Database with partial support for XML Query.

http://modis.ispras.ru/sedna/index.htm

[13] BerkeleyDB, Oracle. BerkeleyDB: An embedded XML Native Database.

http://www.oracle.com/technology/products/berkeley-db/index.html

[14] BlueStream, Corp. XStreamDB. http://www.bluestream.com/products/xstreamdb32

[15] Ives, Z. G. , Halevy, A. Y. , Weld, D. S. (2002). An XML query engine for network-bound

data. VLDB Journal, Volume 11, Number 4, pages 380-402, 2002.

[16] Fegaras, L. , Elmasri, R. (2001). Query Engines for Web-Accessible XML Data. In Pro-

ceedings of the 27th International Conference on Very Large Data Bases, pages 251-260,

2001.

www.manaraa.com

92

[17] Boag, S. , Chamberlin, D. , Fernandez, M. F. , Florescu, D. , Robie, J. , Simeon, J. (2007).

XQuery 1.0: An XML query language. Technical Report, World Wide Web Consortium,

2007. W3C recommendation 23 January 2007.

[18] Chamberlin, D. , Robie, J. , Florescu, D. (2000). Quilt: An XML query language for

heterogeneous data sources. In Proceedings of WebDB 2000 Conference. In Lecture Notes

in Computer Science, Springer-Verlag, 2000.

[19] Clark, J. , DeRose, S. (1999). XML path language (XPath) version 1.0. Technical report,

World Wide Web Consortium (W3C) recommendation 16 November 1999.

[20] DeHaan, D. , Toman, D. , Consens, M. P. , Ozsu, M. T. (2003). A comprehensive XQuery

to SQL translation using dynamic interval encoding. In Proceedings of the ACM SIGMOD.

ACM Press, June 2003.

[21] Fankhauser, P. , Groh, T. , Overhage, S. (2002). XQuery by the book: The IPSI xquery

demonstrator. In Proceedings of the International Conference on Extending Database Tech-

nology, 2002.

[22] Bakker, B. D. , Widarto, I. X-Hive Corporation. An Introduction to XQuery.

http://www.perfectxml.com/articles/xml/xquery.asp

[23] Choi, B. , Fernandez, M. , Simeon, J. (2002). The XQuery Formal Semantics: A Founda-

tion for Implementation and Optimization. May 2002.

[24] Simeon, J. , Fernandez, M. Galax: An implementation of XQuery. http://db.bell-

labs.com/galax/optimization.

[25] Pal, S. , Cseri, I. , Seeliger, O. , Rys, M. , Schaller, G. , Yu, W. , Tomic, D. , Baras, A. ,

Berg, B. , Churin, D. , Kogan, E. (2005). XQuery implementation in a relational database

system. In Proceedings of the 31st international conference on very large data bases, pages

1175-1186, Trondheim, Norway, 2005.

[26] Graves, M. (2002). Designing XML Databases. Prentice Hall.

www.manaraa.com

93

[27] Grust, T. (2002). Accelerating XPath location steps. In Proceedings of the 21st ACM

SIGMOD international conference on management of data, 2002.

[28] Ma, S. , Gadia, S. K. , Berleant, D. , Huang, X. (2004). Implementation of a canonical

native storage for XML. Master’s Thesis. Department of Computer Science. Iowa State

University, 2004.

[29] Patanroi, D. , Gadia, S. K. , Leavens, G. T. , Hyde, W. G. (2005). Binary page implemen-

tation of a canonical native storage for XML. Master’s Thesis. Department of Computer

Science. Iowa State University, 2005.

[30] Ramakrishnan, R. , Gehrke, J. (2000). Database Management Systems, third edition,

McGraw Hill.

[31] Sahuguet, A. , Dupont, L. , Nguyen, T-L. . Kweelt. http://kweelt.sourceforge.net/

[32] Nandakumar, S. , Gadia, S. K. (2005). Implementing a parser for the XQuery grammar

on Kweelt platform. Department of Computer Science. Iowa State University, 2005.

[33] Stark, R. , Gadia, S. K. (2006). Implementing a primitive version of DOM Interface for

CanStoreX. Department of Computer Science. Iowa State University, 2006.

[34] Krithivasan, S. , Swanson, M. , Gadia, S. K. (2006). Building a XQuery application

for CanStoreX on the Kweelt platform. Department of Computer Science. Iowa State

University, 2006.

[35] Le Hors, A. , Le Hegaret, P. , Wood, L. , Nicol, G. , Robie, J. , Champion, M. , Byrne,

S. (2004). Document Object Model (DOM) level 3 core specification. Technical report,

World Wide Web consortium (W3C) recommendation 07 April 2004.

[36] Megginson, D. (2001). SAX: A Simple API for XML. Technical Report, Megginson Tech-

nologies, http://www.saxproject.org/

[37] Schmidt, A. XMark - An XML Benchmark Project. http://monetdb.cwi.nl/xml/

	2007
	Implementation of a XQuery engine for large documents in CanstoreX
	Srikanth Krithivasan
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Introduction to XML
	1.2 Introduction to XQuery
	1.3 XQuery Implementations
	1.4 Introduction to Kweelt/Quilt
	1.5 Introduction to memory concepts
	1.6 Introduction to CanStoreX
	1.7 Introduction to XQuery Implementation

	2. BACKGROUND
	2.1 XQuery
	2.1.1 The XQuery Language
	2.1.2 Path Expressions
	2.1.3 FLWR Expressions
	2.1.4 Operators/ Functions
	2.1.5 XQuery Grammar

	2.2 Quilt
	2.3 Kweelt platform
	2.3.1 Kweelt Architecture
	2.3.2 Extending the framework

	2.4 CanStoreX
	2.4.1 CanStoreX Architecture

	2.5 Prior Work
	2.6 Building the Application

	3. NEED FOR A NEW ARCHITECTURE
	3.1 Main-Memory Usage
	3.2 Storage of Intermediate Results In the Main Memory
	3.3 Creation of In-Memory NodeLists
	3.4 Recursive Function Calls

	4. ENHANCEMENTS IN THE NEW MODEL
	4.1 Integrating CanStoreX
	4.2 Conversion of NodeLists to Iterators
	4.2.1 AncestorOrSelfNodeIterator
	4.2.2 AncestorNodeIterator
	4.2.3 ChildNodeIterator
	4.2.4 DescendantSelfNodeIterator
	4.2.5 DescendantNodeIterator
	4.2.6 DOMNodeListIterator
	4.2.7 ParentNodeIterator
	4.2.8 SelfNodeIterator
	4.2.9 AttributeNodeIterator
	4.2.10 PrecedingSiblingNodeIterator
	4.2.11 FollowingSiblingNodeIterator
	4.2.12 NestedDOMNodeIterator
	4.2.13 SequentialDOMNodeIterator
	4.2.14 StepDOMNodeIterator
	4.2.15 PrecedingNodeIterator
	4.2.16 FollowingNodeIterator
	4.2.17 ValueResultIterator
	4.2.18 Native Iterators

	4.3 Processing Intermediate Results
	4.3.1 Intermediate Results Storage Format
	4.3.2 Result Iterator

	4.4 Conversion of recursive methods to iterative ones
	4.5 Re-implementing the basic Kweelt functionality
	4.6 LET Clause Evaluation

	5. XQUERY SPECIFICATION
	5.1 Simple form of FOR
	5.2 FOR together with WHERE
	5.3 FOR-FOR Clause
	5.4 FOR-FOR-WHERE Clause
	5.5 LET Clause
	5.6 FOR-LET Clause
	5.7 ORDER BY Clause
	5.8 Attribute Clause
	5.9 Object-Oriented Clauses
	5.9.1 Typed References Clause

	5.10 XMark Queries

	6. SORTING TECHNIQUE
	6.1 Current Implementation
	6.2 Proposed Sorting Technique
	6.2.1 External Sorting Algorithm

	6.3 Implementation Specifications
	6.3.1 Creation of Linked List of Pages
	6.3.2 Storage Structure

	7. EXPERIMENTAL RESULTS INTERPRETATION
	7.1 Computer System Benchmark
	7.1.1 CPU
	7.1.2 RAM
	7.1.3 Hard-disks
	7.1.4 Operating System

	7.2 Application Benchmark
	7.2.1 Pagination PageSize
	7.2.2 Storage Files
	7.2.3 XML FileSize
	7.2.4 Pagination Strategy

	7.3 Performance Metrics
	7.3.1 Running Time
	7.3.2 Throughput

	7.4 Result Interpretations

	8. CONCLUSIONS AND FUTURE WORKS
	8.1 Conclusion
	8.2 Future Work

	A. EXPERIMENTAL RESULTS
	BIBLIOGRAPHY

